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Distribution by task categories
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NLP Modeling Landscape

Approx 40% of the task categories are NLP

Covering 78% of the models
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NLP Modeling Landscape

Coverage is 90% of models if we include speech and multimodal categories
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NLP Task Categories

Task category distribution over time (cumulative percentage)
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NLP Modeling Landscape

How can we learn more about the models?

L

WEIGHT

DEEPAIHIRE® CANDIDATE
EVALUATION ALGORITHM
INFERRED INTERNAL WEIGHTINGS

FACTOR

00076
0.0520
0.0208
0.0105
783.5627

EDUCATIONAL BACKGROUND
PAST EXPERIENCE
RECOMMENDATIONS
INTERVIEW PERFORMANCE

ENTHUSIASM FOR DEVELOPING
AND EXPANDING THE USE OF
THE DEEPAIHIRE ALGORITHM

—

AN ANALYSIS OF OUR NEW
Al HIRING ALGORITHM HAS
RAISED SOME CONCERNS.

\
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Model Documentation
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Model Documentation in '~

Model documentation is part of the repo’s README
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Model Documentation for GPT2

Model description

GPT-2is a transformers model pretrained on a very large corpus of English data in a self-
supervised fashion. This means it was pretrained on the raw texts only, with no humans
labelling them in any way (which is why it can use lots of publicly available data) with an
automatic process to generate inputs and labels from those texts. More precisely, it was

trained to guess the next word in sentences.

More precisely, inputs are sequences of continuous text of a certain length and the
targets are the same sequence, shifted one token (word or piece of word) to the right. The
model uses internally a mask-mechanism to make sure the predictions for the token i

only uses the inputs from 1 to i but not the future tokens.

This way, the model learns an inner representation of the English language that can then
be used to extract features useful for downstream tasks. The model is best at what it was

pretrained for however, which is generating texts from a prompt.

This is the smallest version of GPT-2, with 124M parameters.



Model Documentation for GPT2

Training data

The OpenAl team wanted to train this model on a corpus as large as possible. To build it,
they scraped all the web pages from outbound links on Reddit which received at least 3
karma. Note that all Wikipedia pages were removed from this dataset, so the model was
not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB
of texts but has not been publicly released. You can find a list of the top 1,000 domains

present in WebText here.

Preprocessing

The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for
unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024

consecutive tokens.

The larger model was trained on 256 cloud TPU v3 cores. The training duration was not

disclosed, nor were the exact details of training.



Model Documentation for GPT2

Limitations and bias

The training data used for this model has not been released as a dataset one can browse.
We know it contains a lot of unfiltered content from the internet, which is far from

neutral. As the openAl team themselves point out in their model card:

“Because large-scale language models like GPT-2 do not distinguish fact from fiction, we

don’t support use-cases that require the generated text to be true.

Additionally, language models like GPT-2 reflect the biases inherent to the systems they
were trained on, so we do not recommend that they be deployed into systems that
interact with humans > unless the deployers first carry out a study of biases relevant to
the intended use-case. We found no statistically significant difference in gender, race,
and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should
be approached with similar levels of caution around use cases that are sensitive to

biases around human attributes.”

Intended uses & limitations

You can use the raw model for text generation or fine-tune it to a downstream task. See

the model hub to look for fine-tuned versions on a task that interests you.

How to use

You can use this model directly with a pipeline for text generation. Since the generation

relies on some randomness, we set a seed for reproducibility:

>>> from transformers import pipeline, set_seed

>>> generator = pipeline('text-generation', model='gpt2')

>>> set_seed(42)

>>> generator("Hello, I'm a language model,", max_length=30, num_retL

[{'generated_text':
{'generated_text':
{'generated_text':
{'generated_text':
{'generated_text':

"Hello,
"Hello,
"Hello,
"Hello,
'Hello,

I'm a language model, a language for thir
I'm a language model, a compiler, a compi
I'm a language model, and also have more
I'm a language model, a system model. I w

I\'m a language model, not a language moc



Model Documentation for GPT2

Evaluation results

The model achieves the following results without any fine-tuning (zero-shot):

CBT- CBT-
Dataset LAMBADA LAMBADA CN NE WikiText2 PTB enwiki8 text8 WikiText!

(metric) (PPL) (ACC) (ACC) (ACC) (PPL) (PPL)  (BPB)  (BPC) (PPL)

35.13 45.99 87.65 834 29.41 65.85 1.16 A B 37.50
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Model documentation statistics

Distribution of models with documentation over time
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Impact section

=== 2021-11-01

625
L]

571

4385
&

418

- 10-0T-ZZ0Z
- 10-60-2202
- 10-80-ZZ0¢
- 10-£0-2202
- 10-90-2202
- 10-S0-220Z
- 10-v0-2202
- 10-€0-220C
- 10-20-220C
- 10-10-2202
- 10-Z1-1202

T 10-11-1202

- 10-0T-TZ02Z
- 10-60-1Z0Z
- 10-80-TZ02
- 10-£0-TZ0Z
- 10-90-TZ0Z
- 10-50-1Z0Z
- 10-v0-1Z0Z
- 10-€£0-1Z0Z
- 10-20-1Z02
- 10-10-1Z0Z
- 10-21-020Z &
- 10-11-0Z0Z £
- 10-01-0Z0Z
- 10-60-0Z07
- 10-80-0Z02
- 10-£0-0Z0Z
- 10-90-0Z07
- 10-50-0202
- 10-50-0Z0Z
- 10-€0-0207
- 10-20-020Z
- 10-10-0Z0Z
- 10-ZT-6107
- 10-TT1-6102
- 10-0T-610Z
- 10-60-610Z
- 10806102
- 10-£0-610Z
- 10-90-6102
- 10-S0-6102
- 10-40-610Z
- 10-€0-610Z
- 10-20-610Z
- 10-T0-610Z

600 1

2 S
= ]

Jaquinu [3pow

100 -

500 4
400 1



Length of section (#words)

60

40

20

What do developers document about models?

Distribution of length of sections in model cards

Distribution of section length

impact

training

limitations

data

model intro how to start

Model card section

uses

evaluation

citation



Limitation section

TOpiCO . Topicl .
dataset entity llmlta‘g;é)er;h
differgnt datum bias

A i generate
base

cased
domain bias gpt context

' kolanguage
generalize — s4ag

T°pic12 Topic 3
. particular tentigllimitation

bias contain potentia speech
language intend
czech 4 perform
example generate ~ performance
tRRgS people
task dataset specificgroup



Limitation section

Topic 0

dataset

different
limit

entity

case
base

~cased
dom bi
generalize

Topic 2
_particular
bias] contain

language
czech

examplegenerate
dataset

task

. Tbmcl .
limitation
|soeech|

datum bias
generate

work

context
kolanguage

Topic 3
potentiallimitation

ifterid  Speeeh

perform
performance

Anage people
specificgroup



Limitation section

Topic O  Topic1
dataset]| entity limitation
different r— 5 [speech]

limit case 1as

caseq Rase generate

' ] D context
domfﬂ_l@ ko language
generalize o
Topic 2 Topic 3
biasrtlccounlta;in otentiallimitation
' language intendf speech
czech (}rm
example generate _ |perrtormance
ol 4 people
task datasef specific group




How has model documentation evolved?

Observation: Model documentation has evolved



How has model documentation evolved?

Observation: Model documentation has evolved

Goal: Use word embeddings to capture change in content



How has model documentation evolved?

Observation: Model documentation has evolved
Goal: Use word embeddings to capture change in content
Steps:

1. Train a word2vec model for each year



How has model documentation evolved?

Observation: Model documentation has evolved
Goal: Use word embeddings to capture change in content
Steps:

1. Train a word2vec model for each year

2. Align the vocabulary (so same word can be compared across years) (Hamilton et
al., 2016)
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How has model documentation evolved?

Observation: Model documentation has evolved
Goal: Use word embeddings to capture change in content
Steps:

1. Train a word2vec model for each year

2. Align the embeddings (so same word can be compared across years) (Hamilton
et al,, 2016)
3. Compare nearest neighbors or pairwise similarity of vectors

st (wi, wy) = cos-sim(w,”, w}"), for t € {2020,2021, 2022}
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Pairwise similarity between word vectors

Similarity to the word “evaluate”

Word 2020 2021 2022 Spearman
correlation (p)
fairness -0.1 0.0 0.99 0.9
biased -0.01 0.99 0.99 0.86
humans 0.0 0.99 0.99 0.86
statistically 0.99 0.99 -0.02 -0.86
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Pairwise similarity between word vectors

Similarity to the word “training”

Word 2020 2021 2022 Spearman
correlation (p)
harmful -0.01 0.99 0.99 0.86
early 0.0 0.99 0.99 0.86
reproducible 0.99 0.02 0.99 0.0
statistically 0.99 0.99 -0.04 -0.87




Pairwise similarity between word vectors

Similarity to the word “training”

Word 2020 2021 2022 Spearman
correlation (p)
harmful -0.01 0.99 0.99 0.86
early 0.0 0.99 0.99 0.86
reproducible 0.99 0.02 0.99 0.0
statistically 0.99 0.99 -0.04 -0.87




Relation to the word “evaluate”

Spearman correlation p= 0.9

sim =-0.1 sim = 0.0 sim=0.99
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Relation to the word “evaluate”

Spearman correlation p=-0.86

sim = 0.99 sim = 0.99 sim =-0.02

evaluate evaluate L. evaluate
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Relation to the word “training”
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Relation to the word “training”

Spearman correlation p= 0.86

sim=0.0 sim =0.99 sim = 0.99
training training training
°
harmful harmful harmful

2020 2021 2022



Takeaways
Although there is an exponential growth in NLP models, they are dominated by a
few task categories.

The dominant NLP task categories show seasonal patterns

Model documentation has evolved from model-centric to data-centric*
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