
Copyright

by

Nazneen Fatema Rajani

2018

The Dissertation Committee for Nazneen Fatema Rajani
certifies that this is the approved version of the following dissertation:

Explainable Improved Ensembling for

Natural Language and Vision

Committee:

Raymond J. Mooney, Supervisor

Katrin Erk

Greg Durrett

Ken Barker

Explainable Improved Ensembling for

Natural Language and Vision

by

Nazneen Fatema Rajani

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2018

To my mother, father and beloved husband, Zahed Reza.

“You presume you are a small entity, but within you is enfolded the

entire universe.”

— Ali ibn Abu Talib

Acknowledgments

At the outset, I would like to thank my advisor Ray Mooney for being a
supportive guide and coach to me during the last few years. I admire Rays empiricist
attitude and his passion for the advancement of open science. I thoroughly enjoyed
discussing intellectually exciting ideas during my weekly meetings with him. I
genuinely appreciate Ray for working flexibly with me.

I am also grateful to the rest of my committee members, Katrin Erk, Greg
Durrett and Ken Barker for their valuable feedback on my dissertation. I look up to
Katrin for her ability to balance her work and family in a stellar way. It would be
very remiss of me not also to mention Jason Baldridge, my Masters thesis advisor.
Jason continues to be a mentor and inspiration for me.

My graduate school journey would never have been the same without my
friends and lab-mates. I am thankful to Stephen Roller, Karl Pichotta, Iz Beltagy,
Aishwarya Padmakumar, Jesse Thomason, Eric Holgate, Elisa Ferracane and Chris
Brown for making my experience memorable.

I owe a debt of gratitude to the community at Islamic Ahlul Bayt Association
(IABA), Austin for making me feel at home when I moved thousands of miles away
from home to pursue graduate school at the University of Texas.

I owe what I am today to my father. His constant encouragement has always
motivated me to strive to be a better version of myself. I am also thankful to my
mother for being very helpful and supportive throughout my career. My younger
brother and sister for all the good times we spent together.

There is no doubt that my Ph.D. would not have been possible without the
support of my loving husband. He has been by my side through the good times and
the bad times. My daughter, Zainab, who is five months old at the time of writing
this thesis, has made my graduate school experience joyful.

The work done in this thesis was supported by the DARPA DEFT program
under the AFRL grant FA8750-13-2-0026 and the DARPA XAI program.

vi

Explainable Improved Ensembling for

Natural Language and Vision

Nazneen Fatema Rajani, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Raymond J. Mooney

Ensemble methods are well-known in machine learning for improving pre-
diction accuracy. However, they do not adequately discriminate among underlying
component models. The measure of how good a model is can sometimes be es-
timated from “why” it made a specific prediction. We propose a novel approach
called Stacking With Auxiliary Features (SWAF) that effectively leverages com-
ponent models by integrating such relevant information from context to improve
ensembling. Using auxiliary features, our algorithm learns to rely on systems that
not just agree on an output prediction but also the source or origin of that output.

We demonstrate our approach to challenging structured prediction problems
in Natural Language Processing and Vision including Information Extraction, Ob-
ject Detection, and Visual Question Answering. We also present a variant of SWAF
for combining systems that do not have training data in an unsupervised ensemble
with systems that do have training data. Our combined approach obtains a new
state-of-the-art, beating our prior performance on Information Extraction.

The state-of-the-art systems on many AI applications are ensembles of deep-
learning models. These models are hard to interpret and can sometimes make odd
mistakes. Explanations make AI systems more transparent and also justify their
predictions. We propose a scalable approach to generate visual explanations for
ensemble methods using the localization maps of the component systems. Crowd-
sourced human evaluation on two new metrics indicates that our ensemble’s expla-
nation significantly qualitatively outperforms individual systems’ explanations.

vii

Table of Contents

Chapter 1 Introduction .. 1
1.1 Thesis Outline .. 4
1.2 List of Contributions ... 5

Chapter 2 Background and Related Work.. 8
2.1 Chapter Overview... 8
2.2 Ensemble Algorithms.. 8
2.3 Knowledge Base Population .. 10

2.3.1 Slot-Filling (SF) .. 10
2.3.2 Entity Discovery and Linking (EDL)................................... 16

2.4 ImageNet Object Detection.. 19
2.5 Visual Question Answering (VQA) .. 21
2.6 Explainable AI (XAI).. 24
2.7 Chapter Summary... 28

Chapter 3 Stacking with Auxiliary Features .. 29
3.1 Chapter Overview... 29
3.2 Prior Work ... 30
3.3 Stacking With Auxiliary Features (SWAF) 30
3.4 Combining Supervised and Unsupervised Ensembles using SWAF.... 32
3.5 Chapter Summary... 34

Chapter 4 Stacking With Auxiliary Features for NLP................................. 35
4.1 Chapter Overview... 35
4.2 Prior Work ... 36
4.3 Stacking with Auxiliary Features for Relation Extraction 36

4.3.1 Provenance Features .. 37
4.3.2 Instance Features... 39
4.3.3 Post-processing ... 39
4.3.4 Eliminating Slot-Filler Aliases.. 40

viii

4.3.5 Experimental Evaluation on 2014 KBP Slot-Filling 40
4.3.6 Experimental Evaluation on Cold Start Slot Filling (CSSF) ... 46

4.4 Stacking with Auxiliary Features for Entity Linking 49
4.4.1 Provenance Features .. 50
4.4.2 Instance Features... 50
4.4.3 Post-processing ... 51
4.4.4 Experimental Evaluation .. 51

4.5 Combining Supervised and Unsupervised Ensembles for KBP.......... 53
4.5.1 Unsupervised Ensembling Approach................................... 54
4.5.2 Combining Supervised and Unsupervised Ensembles 56
4.5.3 New Auxiliary Feature... 57
4.5.4 Experimental Evaluation .. 57

4.6 Chapter Summary... 59

Chapter 5 Stacking with Auxiliary Features for Computer Vision................ 61
5.1 Chapter Overview... 61
5.2 Prior Work ... 62
5.3 Stacking with Auxiliary Features for Object Detection 63

5.3.1 Auxiliary features for object detection 64
5.3.2 Component object detection models 67
5.3.3 Experimental Results ... 69

5.4 Stacking with Auxiliary Features for VQA...................................... 71
5.4.1 Auxiliary Features for VQA ... 73
5.4.2 Using Explanations.. 75
5.4.3 Component VQA models ... 80
5.4.4 Experimental Results ... 82

5.5 Chapter Summary... 86

Chapter 6 Ensembling and Evaluating Explanations................................... 88
6.1 Chapter Overview... 88
6.2 Prior Work ... 89
6.3 Ensembling Visual Explanation.. 89

ix

6.3.1 Weighted Average Ensemble Explanation 90
6.3.2 Penalized Weighted Average Ensemble Explanation 91
6.3.3 Agreement with N systems... 93
6.3.4 Crowd-sourced hyper-parameter tuning 94

6.4 Evaluating Visual Explanations .. 96
6.4.1 Comparison metric .. 96
6.4.2 Uncovering metric ... 97

6.5 Experimental Results and Discussion ... 99
6.5.1 Comparison metric .. 101
6.5.2 Uncovering metric ... 102

6.6 In-depth Analysis ... 104
6.6.1 Comparison metric: ... 105
6.6.2 Uncovering metric: .. 107

6.7 Chapter Summary... 111

Chapter 7 Future Directions... 113
7.1 Stacking With Auxiliary Features (SWAF) 113
7.2 Explainable AI (XAI).. 114

Chapter 8 Conclusion.. 118

References... 121

Vita... 135

x

List of Tables

2.1 Entity-valued slots and their inverses. ... 11
2.2 String-valued slot types for PER and ORG entities........................... 12

4.1 Performance of baselines on all 2014 SFV dataset (65 systems) 43
4.2 Performance on the common systems dataset (10 systems) for var-

ious configurations. All approaches except the Stanford system are
our implementations.. 43

4.3 Baseline performance on all 2014 SFV dataset (65 systems) using
unofficial scorer.. 45

4.4 Performance on the common systems dataset (10 systems) for var-
ious configurations using the unofficial scorer. All approaches ex-
cept the UIUC system are our implementations. 45

4.5 Results on 2015 Cold Start Slot Filling (CSSF) task using the offi-
cial NIST scorer ... 47

4.6 Results on 2016 Cold Start Slot Filling (CSSF) task using the offi-
cial NIST scorer ... 48

4.7 Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL)
task using the official NIST scorer and the CEAFm metric 51

4.8 Results on 2016 Tri-lingual Entity Discovery and Linking (EDL)
task using the official NIST scorer and the CEAFm metric 52

4.9 Results on 2015 Cold Start Slot Filling (CSSF) task using the offi-
cial NIST scorer ... 58

4.10 Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL)
using official NIST scorer and CEAF metric 59

xi

5.1 Results on 2015 ImageNet object detection task using the official
ImageNet scorer.. 70

5.2 VQA dataset splits. ... 73
5.3 Accuracy results on the VQA test-standard set. The first block

shows performance of a VQA model that use external data for pre-
training, the second block shows single system VQA models, the
third block shows an ensemble VQA model that also uses external
data for pre-training, and the fourth block shows ensemble VQA
models. .. 83

6.1 Results obtained using the comparison metric for evaluating the en-
semble explanation map in terms of the percentage of cases a sys-
tem’s explanation was preferred, averaged for each ensembling ap-
proach. The remaining percentage of the time there was no majority
agreement among human subjects. The bold figures imply statisti-
cal significance (p-value< 0.05). .. 101

6.2 Results obtained using the uncovering metric averaged over image-
question pairs. Shows the percentage of cases for which a partially
revealed image was sufficient to arrive at the correct answer. Bold-
face indicates maximum in each column. .. 103

6.3 Results obtained using the uncovering metric averaged over image-
question pairs. Shows the percentage of cases for which a partially
revealed image was sufficient to arrive at the correct answer based
on the normalized uncovered pixel ratio. Boldface indicates maxi-
mum in each column. .. 103

xii

6.4 Results obtained using the comparison metric for evaluating the en-
semble explanation map in terms of the percentage of the time, av-
eraged for each case. The ensemble’s explanation maps were gen-
erated using both the Weighted Average (WA) and the Penalized
Weighted Average (PWA) approaches when one or two systems
agree with the ensemble’s output. PWA approach is not applica-
ble when all the systems agree with the ensemble’s prediction. The
bold figures imply statistical significance (p-value< 0.05). 105

6.5 Results obtained using the uncovering metric for the individual mod-
els and the weighted average ensemble when all three systems agree
with the ensemble’s answer. The figures show the percentage of
cases for which a partially revealed image was sufficient to arrive at
the correct answer. Boldface indicates maximum in each column. 106

6.6 Results obtained using the uncovering metric for the individual mod-
els and the ensemble systems when any two systems agree with the
ensemble’s answer averaged over IQ pairs. Boldface indicates max-
imum in each column. ... 107

6.7 Results obtained using the uncovering metric for the individual mod-
els and the ensemble systems when any one system agrees with
the ensemble’s answer, averaged over IQ pairs. Boldface indicates
maximum in each column.. 107

6.8 Results obtained using the uncovering metric for the individual mod-
els and the weighted average ensemble based on the normalized un-
covered pixel ratio when all three systems agree with the ensemble’s
answer. Boldface indicates maximum in each column. 109

6.9 Results obtained using the uncovering metric for the individual mod-
els and ensemble systems based on the normalized uncovered pixel
ratio when any two systems agree with the ensemble’s answer. Bold-
face indicates maximum in each column. .. 109

xiii

6.10 Results obtained using the uncovering metric for the individual mod-
els and ensemble systems based on the normalized uncovered pixel
ratio when any one system agrees with the ensemble’s answer. Bold-
face indicates maximum in each column. .. 110

xiv

List of Figures

2.1 Example of the slot-filling task. Systems extract fills from unstruc-
tured text for a fixed ontology and provide provenance in the form
of text-substring along with a confidence score. 13

2.2 Overview of a generic slot-filling system’s architecture. 15
2.3 The above example illustrates identifying and disambiguating entity

mentions in a source document as part of the EDL task. The disam-
biguated mentions are then linked to their respective KB entries. 17

2.4 Overview of a generic entity-linking system’s architecture................ 18
2.5 Example comparing image classification and object detection. 20
2.6 Examples of VQA questions (black) and answers given by humans

when looking at the image (green) and when not looking at the im-
age (blue)... 22

2.7 A CNN-RNN combination on a VQA example (Lu et al., 2016). 23
2.8 XAI concept as described in Gunning (2016). 25
2.9 Sample explanations produced by Hendricks et al. (2016) on the

fine-grained bird species classification dataset. 26
2.10 Visual explanations on sample VQA image-question pairs from Sel-

varaju et al. (2017).. 27

3.1 Our SWAF approach to combining system outputs using confidence
scores and two types of auxiliary features for improving prediction. .. 32

3.2 Given N systems with training data and M systems without train-
ing data, our variant of SWAF approach combines the unsupervised
ensemble of M systems with N supervised systems......................... 33

xv

4.1 Suppose three systems extract fills from the string “Former Presi-
dent Barack Obama” at offsets shown above, starting at offset zero.
The offset provenance feature for each system is calculated using
Jaccard similarity measure applied on substrings as demonstrated
in this image... 38

4.2 Our system pipeline for end-to-end development of the SWAF en-
semble for the KBP SF task. .. 41

4.3 Precision-Recall curves for identifying the best voting performance
on the two datasets.. 42

4.4 Learning curve for training on 2013 and testing on 2014 common
systems dataset ... 44

4.5 Illustration of our SWAF approach on an instance of the CSSF
dataset. SWAF uses the auxiliary features including the text snippet
above as provenance for classifying the instance. 48

4.6 Illustration of our SWAF approach on an instance of the TEDL
dataset. One system linked the mention to a FreeBase entry for
Hillary Clinton whereas the other system linked the same mention
to Bill Clinton. SWAF uses the auxiliary features including the text
snippet above as provenance for classifying the instance................... 53

4.7 Total number of unique and common input pairs contributed by the
supervised and unsupervised systems to the combination for the
CSSF and TEDL tasks respectively... 60

5.1 ImageNet Object detection sample images with bounding boxes
around object categories. ... 63

5.2 The provenance feature for a system is calculated as the intersection
(red area) over union (red plus blue areas) of the area of its bounding
box with every other system’s bounding box for an object instance.... 65

xvi

5.3 Random sample of outputs obtained on the 2015 ImageNet object
detection task. The green bounding boxes are generated by the in-
dividual systems and among those, SWAF is able to identify the
bounding boxes that are actually correct indicated by red. 70

5.4 Random sample of images with questions and ground truth answers
taken from the VQA dataset... 72

5.5 Given an image and a target class (e.g.“Tiger Cat”), GradCAM gen-
erates a visual explanation by backpropagating the gradients for that
class to the convolutional feature maps of interest. The visual ex-
planation represents where the model “looks” while making a par-
ticular decision. .. 76

5.6 Each row from left to right shows an image-question pair from the
VQA dataset along with localization-maps overlaid on the image
generated by the LSTM, HieCoAtt and MCB models respectively.
The answers shown are those predicted by our ensemble. 77

5.7 The MCB and HieCoAtt models generate the correct answer and
have localization-maps that support their answer (i.e, “tennis”) while
the LSTM model focuses on the player’s foot and ground area and
produces an incorrect answer (i.e., “baseball”)................................. 78

5.8 Example of an image-question pair where all three component mod-
els have overlapping localization-maps and produce the correct an-
swer (i.e., “skateboarding”).. 79

5.9 Example of an image-question pair where all three component mod-
els have barely any overlap between their localization-maps and
produce the incorrect answer (i.e., “yes”). 79

5.10 Results for auxiliary features ablations on the VQA test-dev set.
The x-axis indicates the feature that was ablated from the final
ensemble. Dotted line shows the performance of SWAF without
any ablations. ... 85

xvii

6.1 The Weighted Average (WA) ensemble explanation approach on an
instance of the VQA data. In this example, all three component
systems as well as the ensemble agree on the same answer (i.e.,
“yellow”). .. 91

6.2 The top row shows the process of ensembling visual explanation
for an IQ pair when the ensemble model agrees with the MCB and
HieCoAtt models (ans: “red”) and disagrees with the LSTM model
(ans: “white”). The bottom row shows the reference IQ pair and
the MCB vs ensemble visual explanation. The explanation map is
normalized to obtain the final ensemble visualization. 92

6.3 The Penalized Weighted Average (PWA) ensemble explanation ap-
proach on an instance of the VQA data. In this case, the LSTM and
HieCoAtt systems agree with the ensemble’s answer (i.e., “right”)
while the MCB disagrees... 93

6.4 AMT interface for evaluating visual explanations. 95
6.5 The top row shows the uncovering of the explanation map step-by-

step from left-to-right on an instance of the VQA data generated by
the LSTM model. The second row shows the corresponding refer-
ence heat-maps beginning from one-third of the “hottest” region of
the explanation going all the way to uncovering the entire explana-
tion map... 97

6.6 Example of the uncovering metric on the ensemble explanation. 98
6.7 The top and bottom rows show the step-by-step uncovering metric

using the normalized pixel ratio on the explanation map from left-
to-right for the ensemble and LSTM models respectively.................. 100

6.8 The top and bottom rows show the step-by-step uncovering metric
using the normalized pixel ratio on the explanation map from left-
to-right for the ensemble and LSTM models respectively.................. 100

xviii

Chapter 1

Introduction

Ensembling multiple systems is a well known standard approach to improv-
ing accuracy in several machine learning applications (Dietterich, 2000). Ensem-
bles have been applied to a wide variety of problems in all domains of Artificial
Intelligence including Natural Language Processing (NLP) and Computer Vision.
In NLP, these have been applied to Parsing (Henderson and Brill, 1999), Word
Sense Disambiguation (WSD) (Pedersen, 2000), Sentiment Analysis (Whitehead
and Yaeger, 2010) and Information Extraction (IE) (Florian et al., 2003; McClosky
et al., 2012). In the domain of Computer Vision, ensembles have been used for Im-
age Classification (Korytkowski et al., 2016), Object Tracking (Zhou et al., 2014),
Object Detection (Malisiewicz et al., 2011) and Zero-shot Recognition (Jayara-
man and Grauman, 2014). However, these techniques do not learn to adequately
discriminate across the component systems and thus are unable to integrate them
optimally. We seek to integrate knowledge from multiple sources to improve en-
sembling using a new approach we call Stacking With Auxiliary Features (SWAF)
(Rajani and Mooney, 2017b). Stacking (Wolpert, 1992) uses supervised learning to
train a meta-classifier to combine multiple system outputs. The auxiliary features
enable the stacker to fuse additional relevant knowledge from multiple systems and
thus leverage them to improve prediction.

We consider the general machine learning problem of combining structured
outputs from multiple systems to improve accuracy by using auxiliary features.
We propose two types of auxiliary features – those that enable the stacker to dis-
criminate across instance types which we call, the instance features and those that
enable the stacker to discriminate across component systems which we call, the
provenance features. SWAF can be successfully deployed to any problem whose
output instances have confidence scores and optionally provenance that justifies the
output. Provenance indicates the origin of the generated output and can be used to
measure the reliability of system output. The idea behind using auxiliary features is

1

that an output is more reliable if not just multiple systems produce it but also agree
on its provenance, and there are sufficient supporting instance features. The SWAF
algorithm requires identifying the instance and provenance features for a given task.

We demonstrate SWAF on a variety of machine learning problems in the
areas of natural language and vision. All the tasks are difficult and well-known
challenge problems. We obtain new state-of-the-art results on two Knowledge Base
Population (KBP) tasks – (i) relation extraction and (ii) entity linking (Rajani et
al., 2015; Rajani and Mooney, 2017b). For Object detection and Visual Question
Answering (VQA) problems in vision, our SWAF approach beats all the individual
and ensemble systems considered in our experimental setup (Rajani and Mooney,
2017b, 2018). We propose auxiliary features for each of the aforementioned tasks
that enable the stacking meta-classifier to exploit additional relevant knowledge of
both the component systems and the problem.

Stacking uses supervised learning and requires training data to ensemble
multiple systems. However, we would sometimes like to ensemble systems for
which we have no historical performance data. Unsupervised ensembling methods
such as voting and constrained optimization techniques (Wang et al., 2013) have
been developed for this scenario. However, such methods fail to exploit supervi-
sion for those systems for which we do have training data. We designed a novel
variant of SWAF that uses supervised and unsupervised ensembling to exploit the
advantages of both (Rajani and Mooney, 2016). We first combine systems without
training data into an unsupervised ensemble. Next, we use stacking to combine
this unsupervised ensemble with other systems with available training data. SWAF
can, therefore, handle both systems with and without training data for learning an
ensemble.

Although there have been several innovative and ground-breaking ideas de-
ployed to solve VQA problems, the current state-of-the-art on real-world images
is still approximately 12 points behind human accuracy.1 One way to reduce this
gap in performance is to analyze how various neural architectures arrive at their

1Based on the performance reported on the CodaLab Leader-board and human performance re-
ported on the task in (Antol et al., 2015).

2

predicted answers, and then design heuristics or loss functions that overcome the
shortcomings of current networks. Also, systems that can explain their decisions
make them more trustworthy, transparent, and user-friendly (Aha et al., 2017; Gun-
ning, 2016). This has led to some work in generating explanations that help interpret
the decisions made by CNNs (Goyal et al., 2016; Hendricks et al., 2016; Park et al.,
2016; Ross et al., 2017). However, previous work focuses on generating expla-
nations for individual models even though the top performing systems on various
computer vision and language tasks are ensembles of multiple models. This moti-
vated us to explore the problem of generating explanations for an ensemble using
explanations from underlying individual models as input.

VQA systems have been shown to attend to relevant parts of the image when
answering a question (Goyal et al., 2016). The regions of an image on which a
model focuses can be thought of as a visual explanation for that image-question
(IQ) pair. The Grad-CAM algorithm highlights the regions in an image that the
model focuses on by generating a heat-map with intensity gradients (Selvaraju et
al., 2017). We adapt their approach on three individual VQA models to obtain their
explanations maps. We then propose two novel methods for generating visual ex-
planation for our SWAF ensemble: (i) the weighted average and (ii) the penalized
weighted average. These methods generate explanations by ensembling visual ex-
planations of the component models.

Evaluating AI-system explanations is a challenging problem that has at-
tracted attention in recent years (Samek et al., 2017; Ribeiro et al., 2016; Park et
al., 2016; Das et al., 2017a). The work in this area uses crowd-sourcing to evaluate
explanations. However, most of these evaluations measure the extent to which a
machine-generated explanation overlaps with a human-generated explanation, con-
sidering human explanation as the ground truth. This has several disadvantages.
Research shows that human and deep-learning models do not attend to the same in-
put evidence even when they produce the same output (Das et al., 2017a). To aid in-
terpretability and trust, machine explanations should accurately reflect the system’s
reasoning rather than try to produce “post-hoc rationalizations” that mimic human
explanations and might convince users to mistakenly trust its results. Consequently,

3

we propose two novel evaluation methods for judging the quality of explanations:
(i) the comparison metric and (ii) the uncovering metric. The comparison metric
evaluates explanations by asking human subjects to compare and score two ma-
chine generated explanations side-by-side. The uncovering metric measures how
accurately a human subject can arrive at the same decision as the system using only
the information from a system-generated explanation. Results on crowd-sourced
evaluation using both these metrics indicate that our ensemble explanation signifi-
cantly qualitatively outperforms the explanation of individual component models.

1.1 Thesis Outline

The remainder of this thesis is organized as follows:
In Chapter 2, we review the background information crucial to understand-

ing this thesis, including a brief discussion of well-known ensembling techniques in
machine learning. We also introduce each of relevant applications considered in this
thesis, including Slot-filling, Entity linking, Object detection and Visual Question
Answering. This chapter also discusses related work in each of these applications.

In Chapter 3, we introduce a novel ensembling approach, Stacking With
Auxiliary Features (SWAF). We propose two types of auxiliary features: (i) the
instance features and (ii) the provenance features. We also introduce a new variant
of SWAF that combines systems that do not have training data with systems that do

have training data.
In Chapter 4, we demonstrate our SWAF approach on two Knowledge Base

Population (KBP) problems: (i) slot-filling and (ii) entity linking. We define the
auxiliary features for each of the two tasks and discuss how we ensemble diverse
systems with structured outputs. We then extensively compare our approach to
several top-ranking individual and ensemble models and show that our approach
outperforms each of the systems considered in our experimental setup. We also
demonstrate a variant of SWAF for combining supervised and unsupervised systems
on the two KBP tasks and show that it does better than using just the supervised
systems.

4

In Chapter 5, we demonstrate SWAF on two well-known computer vision
problems: (i) Object detection and (ii) Visual Question Answering (VQA). We iden-
tify auxiliary features for each of these problems and for VQA, we also introduce
the idea of using visual explanations from models as auxiliary features. We present
results on the 2015 version of the ImageNet object detection task and the 2016
version of the VQA task.

In Chapter 6, we propose a novel solution to generate explanations for an en-
semble system by ensembling visual explanations of component models for VQA.
We also propose two new evaluation metrics: (i) the comparison metric and (ii) the
uncovering metric. These metrics measure how good a visual explanation is without
requiring human-generated gold standard.

In Chapter 7, we propose some future directions for our research and finally,
in Chapter 8, we summarize our contributions and findings.

1.2 List of Contributions

In this thesis, we make the following contributions:

Stacking With Auxiliary Features (SWAF) as an ensemble approach

We introduce a new ensembling algorithm, Stacking with Auxiliary Features
(SWAF), that extends the idea of stacking proposed by Wolpert (1992) to also in-
clude other system and task-specific features along with confidence scores of the
base systems. The meta-classifier learns to combine outputs of multiple systems
using features of the component models and current problem as context.

Auxiliary Features

We propose two categories of auxiliary features: (i) the instance features and
(ii) the provenance features. The instance features enable the stacker to discrimi-
nate between input instances, whereas the provenance features enable the stacker to

5

discriminate between the component systems.

Variant of SWAF for combining supervised and unsupervised systems

We introduce a variant of SWAF that can ensemble not just models that have
training data but also models without training data. We first use unsupervised en-
sembling to combine systems without training data, and then use stacking to com-
bine this ensembled system with other systems for which training data is available.

Demonstrate SWAF on NLP problems

We demonstrate our SWAF approach on two Knowledge Base Population
(KBP) tasks: (i) relation extraction and (ii) entity linking. We propose instance and
provenance features for both these tasks and do a comprehensive analysis to show
how each of these feature types affects the performance of SWAF. We also demon-
strate the SWAF variant that combines supervised systems with an unsupervised
ensemble on the KBP tasks.

Demonstrate SWAF on Vision problems

We extend the idea of SWAF to computer vision as well by demonstrating
it on object detection and Visual Question Answering (VQA). We show how the
notion of provenance can be extended to these two vision problems, in particular,
how the idea of provenance ties in with the idea of visual explanation for VQA.

Visual explanation as auxiliary feature for SWAF

We propose the idea of using visual explanation as auxiliary features for
VQA. The idea is that an output is reliable if not just multiple systems agree on the
output prediction but they also agree with its explanation. Our work demonstrates
that explanation is not limited to building human trust on machines and show how

6

it can be used with other auxiliary features to improve the accuracy of VQA.

Generate visual explanation for ensemble models

We introduce a novel solution for generating visual explanations for ensem-
ble systems by ensembling the explanation of the component models. Our approach
produces explanation maps that are qualitatively better and less noisy than the in-
dividual model’s explanation map. We generate explanations using two methods:
(i) the weighted average and (ii) the penalized weighted average.

Two novel metrics for evaluating visual explanations

We evaluate visual explanations using two new metrics: (i) the compari-
son metric and (ii) the uncovering metric. Both our evaluation metrics use crowd-
sourcing but do not rely on the human-generated gold standard. The comparison
metric compares two machine-generated visual explanations and ranks them based
on the quality of the generated explanation. On the other hand, the uncovering
metric judges whether the input evidence highlighted by a visual explanation is suf-
ficient to allow a human judge to arrive at the same prediction as the model that
produced it.

7

Chapter 2

Background and Related Work

2.1 Chapter Overview

In this chapter, we discuss the background and related work critical to this
dissertation. We begin by reviewing the various ensembling methodologies in ma-
chine learning relevant to our thesis. We then discuss the two Knowledge Base
Population (KBP) problems of Relation Extraction and Entity Linking. After that,
we overview the Object Detection and Visual Question Answering (VQA) tasks
in computer vision. Finally, we discuss the problem and challenges of producing
Explainable AI (XAI) systems as well as relevant work in this area.

2.2 Ensemble Algorithms

Ensemble methods are models composed of multiple component models that
are independently trained and whose predictions are combined in a certain pre-
defined way to make the overall prediction. These methods vary in the ways the
component models are combined and what types of models are combined. Ensem-
ble algorithms are very powerful and therefore well known. Some of these popular
types of ensembling algorithms are:

• Boosting (Freund and Schapire, 1995) refers to training a model on a set of
data and then creating a second model that attempts to correct the errors of the
first model. In this way, models are added until the training set is predicted
perfectly or a maximum number of models are added. Boosting focuses on
reducing the bias.
• Bagging (Breiman, 1996) or Bootstrap Aggregation refers to the prediction

by generating additional data for training using repetitions to produce multi-
sets of the same cardinality as the original data. Bagging focuses on reducing

8

the variance.
• Stacking (Wolpert, 1992) refers to building a meta-classifier on top of the

component models to estimate the decision based on the outputs produced
by the base models. In Stacking, the meta-classifier is trained on a held out
dataset, such as the validation set, that is disjoint from the training data of the
component models. The input to the meta-classifier is the confidence score
of the component models and the output is a binary decision on each instance
of the data.
• Random Forest (Liaw and Wiener, 2002) refers to the weighted combina-

tion of decision trees trained on random subsets of the data.

In this thesis, we use stacking as our ensembling algorithm and extend it to make it
even more powerful by using task-specific features which we call auxiliary features.

In the past, many new state-of-the-art ensembling algorithms have been pro-
posed. Bipartite Graph-Based Consensus Maximization (BGCM) is one such al-
gorithm (Gao et al., 2009). The authors introduce BGCM as a way of combining
supervised and unsupervised models for a given task. The idea behind BGCM is to
cast the ensembling task as an optimization problem on a bipartite graph, where the
objective function favors the smoothness of the prediction over the graph, as well as
penalizing deviations from the initial labeling provided by supervised models. The
algorithm entails consolidating a classification solution by maximizing the consen-
sus among both supervised predictions and unsupervised constraints. BGCM out-
performs all its component models on ten out of eleven classification tasks across
three different datasets evaluated by Gao et al. (2009).

The Mixtures of Experts (ME) is another ensembling algorithm (Jacobs et
al., 1991). The ME algorithm has a close proximity to our stacking with auxiliary
features algorithm in terms of the underlying intuition of leveraging systems that
are good at certain types of instances of a task. In this method, the problem space
is partitioned stochastically into a number of sub-spaces and the idea is that the
experts or learners are specialized on each subspace. ME uses divide-and-conquer
principle to soft switch between learners covering different sub-spaces of the in-

9

put. This method uses a supervised gating network which can be learned using
Expectation-Maximization (EM). More recently, Eigen et al. (2013) extended ME
to use a different gating network at each layer in a multilayer network, forming a
Deep Mixture of Experts. By associating each input with a combination of experts
at each layer, their model used different subsets of its units for different inputs,
making it large as well as efficient.

2.3 Knowledge Base Population

Knowledge Base Population (KBP) is an NLP problem of discovering facts
about entities from text and adding them to a Knowledge Base (KB) (Ji and Grish-
man, 2011). Information Extraction (IE) or Relation Extraction, in particular, is a
sub-task for KBP. Relation extraction using a fixed ontology is called Slot-Filling
(SF). Entity Discovery and Linking (EDL) is another KBP subtask that involves
identifying all entity mentions in a text corpus and linking those mentions to a KB.
NIST annually conducts the slot-filling (Surdeanu, 2013; Surdeanu and Ji, 2014)
and entity discovery and linking (Ji et al., 2015, 2016) tasks in the KBP track of the
Text Analysis Conference (TAC).

2.3.1 Slot-Filling (SF)

The goal of slot-filling is to collect information (fills) about specific at-
tributes (slots) for a set of entities (queries) from a given corpus. The query entities
in TAC KBP can be a person (PER), organization (ORG) or geo-political entity
(GPE). In 2015, NIST replaced the slot-filling task with the cold start slot filling
(CSSF) task. The task became more challenging because the queries used were en-
tities that did not have a Wikipedia entry. CSSF also included the inverse of each
slot, for example, the slot org:subsidiaries and its inverse org:parents.
The evaluation included a total of forty-one slots and their inverses. Some slots
(like per:age) are single-valued while others (like per:children) are list-valued i.e.,
they can take multiple slot fillers. Out of the forty-one slots, twenty-six have fills
that are themselves entities and are therefore categorized as entity-valued slots, as

10

shown in Table 2.1. Each entity-valued slot has an inverse. The remaining fifteen
slots have string-valued fills, as shown in Table 2.2.

Relation Inverse(s)

per:children per:parents
per:other family per:other family
per:parents per:children
per:siblings per:siblings
per:spouse per:spouse
per:employee or member of {org,gpe}:employees or members
per:schools attended org:students
per:city of birth gpe:births in city
per:stateorprovince of birth gpe:births in stateorprovince
per:country of birth gpe:births in country
per:cities of residence gpe:residents of city
per:statesorprovinces of residence gpe:residents of stateorprovince
per:countries of residence gpe:residents of country
per:city of death gpe:deaths in city
per:stateorprovince of death gpe:deaths in stateorprovince
per:country of death gpe:deaths in country
org:shareholders {per,org,gpe}:holds shares in
org:founded by {per,org,gpe}:organizations founded
org:top members employees per:top member employee of
{org,gpe}:member of org:members
org:members {org,gpe}:member of
org:parents {org,gpe}:subsidiaries
org:subsidiaries org:parents
org:city of headquarters gpe:headquarters in city
org:stateorprovince of headquarters gpe:headquarters in stateorprovince
org:country of headquarters gpe:headquarters in country

Table 2.1: Entity-valued slots and their inverses.

11

PER ORG

per:alternate names org:alternate names
per:date of birth org:political religious affiliation
per:age org:number of employees members
per:origin org:date founded
per:date of death org:date dissolved
per:cause of death org:website
per:title
per:religion
per:charges

Table 2.2: String-valued slot types for PER and ORG entities.

The input for slot-filling is a set of queries and a text corpus in which to look
for information. The queries are provided in an XML format that includes an ID
for the query, the name of the entity, and the type of entity (PER, ORG or GPE).
The corpus consists of documents from discussion forums, newswire and the Inter-
net, each identified by a unique ID. The output is a set of slot fills for each query.
Along with each slot fill, systems must also provide provenance in the corpus in
the form docid:startoffset-endoffset, where docid specifies a source
document and the offsets demarcate the text in this document containing the ex-
tracted filler. Systems also provide a confidence score to indicate their certainty in
the extracted information. Figure 2.1 illustrates an example entity, some slot fills,
and the expected output format for the task.

The CSSF also included some two-hop queries. Two-hop queries have two
slot types and the expected output is a fill for slot0 in relation to the query entity
and a fill for slot1 in relation to the output of slot0. Below is a sample of a
two-hop evaluation query from the 2015 CSSF task:

12

Figure 2.1: Example of the slot-filling task. Systems extract fills from unstructured
text for a fixed ontology and provide provenance in the form of text-substring along
with a confidence score.

<query id=”CSSF15 ENG 210”>
<name>June McCarthy</name>
<docid>42</docid>
<beg>16931</beg>
<end>16943</end>
<enttype>PER</enttype>
<slot>per:children</slot>
<slot0>per:children</slot0>
<slot1>per:age</slot1>

</query>

The natural-language form of the query is the question “Who are June McCarthy’s
children and what are their ages?”. From the above example, it is clear that the two-
hop queries are much more challenging as they attempt to answer questions that
are more compositional. The evaluation for such queries is also very tricky. NIST
evaluated such multiple-hop queries as follows. If a system generated an incorrect
hop-0 response then all its hop-1 responses will be treated as incorrect even if
they were actually correct. So, only if the hop-0 output of a system is correct,
the hop-1 output would be evaluated. Moreover, while calculating precision, the
metric included hop-1 outputs in the total number even though it was not even

13

evaluated for corresponding incorrect hop-0 outputs.
Participating teams in the slot-filling evaluation employ a variety of tech-

niques such as distant supervision, universal schema, relevant document extraction,
relation-modeling, OpenIE and inference (Finin et al., 2015; Soderland et al., 2015;
Kisiel et al., 2015). The top-performing 2015 CSSF system (Angeli et al., 2015)
leverages both distant supervision (Mintz et al., 2009) and pattern-based relation ex-
traction. Another system, UMass IESL (Roth et al., 2015), uses distant supervision,
rule-based extractors, and semi-supervised matrix embedding methods. There has
also been some work on increasing the performance of relation extraction through
ensemble methods. The FAUST system for biomolecular event extraction used
model combination strategies such as voting and stacking and was placed first in
three of the four BioNLP tasks in 2011 (Riedel et al., 2011).

Google’s Knowledge Vault system (Dong et al., 2014) combines the output
of four diverse extraction methods by building a boosted decision stump classifier
(Reyzin and Schapire, 2006). For each proposed fact, the classifier considers both
confidence value of each extractor and number of responsive documents found by
the extractor. A separate classifier is trained for each predicate, and Platt Scaling
(Platt, 1999) is used to calibrate confidence scores. The use of stacked generaliza-

tion for information extraction has been demonstrated to outperform both majority
voting and weighted voting methods (Sigletos et al., 2005). In relation extraction,
a stacked classifier effectively combines a supervised, closed-domain Conditional
Random Field-based relation extractor with an open-domain CRF Open IE system,
yielding a 10% increase in precision without harming recall (Banko et al., 2008).
We are the first to apply stacking to KBP and the first to use provenance as a fea-
ture in a stacking approach. Figure 2.2 shows an overview of a generic slot-filling
system’s architecture.

The KBP evaluations also included the Slot Filler Validation (SFV) task1

where the goal is to ensemble/filter outputs from multiple slot filling systems. Many
KBP SFV systems apply a variety of techniques for validating output across docu-
ments such as rule-based consistency checks (Angeli et al., 2013), and techniques

1http://www.nist.gov/tac/2015/KBP/SFValidation/index.html

14

http://www.nist.gov/tac/2015/KBP/SFValidation/index.html

Figure 2.2: Overview of a generic slot-filling system’s architecture.

15

from the well-known Recognizing Textual Entailment (RTE) task (Cheng et al.,
2013; Sammons et al., 2014). In contrast, the 2013 JHUAPL system (Wang et al.,
2013) aggregates the results of many different extractors using a constrained opti-
mization framework, exploiting confidence values reported by each input system. A
second approach in the UI CCG system (Sammons et al., 2014) aggregates results
of multiple systems by using majority voting. In the database, web-search, and data-
mining communities, a line of research into “truth-finding” or “truth-discovery”
methods, addresses the related problem of combining evidence for facts from mul-
tiple sources, each with a latent credibility (Yin et al., 2008). The RPI BLENDER

KBP system (Yu et al., 2014) casts SFV in this framework, using a graph propaga-
tion method that modeled the credibility of systems, sources, and response values.

NIST evaluated the slot-filling task using the Precision, Recall and F1 met-
rics. The output generated by systems is compared to the gold standard output cre-
ated by the Linguistic Data Consortium (LDC) experts.2 Precision is the fraction of
correct slot-fills among the total slot-fills extracted whereas Recall is the fraction of
correct slot-fills that have been extracted among the total number of slot-fills in the
gold standard. F1 is the harmonic mean of precision and recall.

2.3.2 Entity Discovery and Linking (EDL)

Entity Discovery and Linking (EDL) is another sub-task for KBP. It involves
two sub-problems widely known in NLP – (1) Named Entity Recognition (NER);
and (2) Disambiguation. NIST annually conducts the EDL task (Ji et al., 2015) in
the KBP track of the Text Analysis Conference (TAC). The source corpus provided
for the task contains documents in Chinese and Spanish along with English, and
thus it is called Tri-lingual Entity Discovery and Linking (TEDL).

The goal of EDL is to discover all entity mentions in a corpus of English,
Spanish and Chinese documents and link those mentions to a KB. The entities can
be a person (PER), organization (ORG), geo-political entity (GPE), facility (FAC),
or location (LOC). The FAC and LOC entity types were newly introduced in 2015.

2https://www.ldc.upenn.edu/

16

https://www.ldc.upenn.edu/

Figure 2.3: The above example illustrates identifying and disambiguating entity
mentions in a source document as part of the EDL task. The disambiguated men-
tions are then linked to their respective KB entries.

The extracted mentions are then linked to an existing English KB entity using its ID.
If there is no KB entry for an entity, systems are expected to cluster all the mentions
for that entity using a NIL ID. The input is a corpus of documents in the three
languages and an English KB (FreeBase) of entities, each with a name, ID, type,
and several relation tuples that allow systems to disambiguate entities. The output
is a set of extracted mentions, each with a string, its provenance in the corpus, and
a corresponding KB ID if the system could successfully link the mention, or else
a mention cluster with a NIL ID. Systems can also provide a confidence score for
each mention. Figure 2.3 illustrates an example of entity mention disambiguation
in a document and its link to a corresponding KB entry.

Participating teams employ a variety of techniques for candidate genera-
tion and ranking. The CMUML team used a unified graph-based approach to do
concept disambiguation and entity linking by leveraging the FreeBase ontology
(Fauceglia et al., 2015). The HITS team combined local, unsupervised sieves with
a global, supervised, joint disambiguation and NIL clustering to build a hybrid sys-

17

Figure 2.4: Overview of a generic entity-linking system’s architecture.

tem (Heinzerling et al., 2015). The UI CCG focused on the Spanish language sub-
task of TEDL, by using Google Translation to translate Spanish documents into
English and then using the Illinois Wikifier to identify entity mentions and dis-
ambiguate them to FreeBase entities (Sammons et al., 2015). The top-performing
2015 TEDL system used a combination of deep neural networks and Conditional
Random Fields (CRFs) for mention detection and a language-independent proba-
bilistic disambiguation model for entity linking (Sil et al., 2015). He et al. (2013)
proposed a fast and scalable collective entity linking method that relies on stacking.
They stack a global predictor on top of a local predictor to collect coherence infor-
mation from neighboring decisions. Biomedical entity extraction using a stacked
ensemble of a Support Vector Machine (SVM) and CRF was shown to outperform
individual components as well as voting baselines (Ekbal and Saha, 2013). Rajani
et al. (2017) use stacking for obtaining state-of-the-art results on entity linking in
the medical domain on several datasets using multiple evaluation metrics. However,

18

there has been no prior work on ensembling for the TEDL task, and our Stacking
With Auxiliary Features (SWAF) approach beats the current state-of-the-art system.
Figure 2.4 gives an overview of a very general entity-linking system.

NIST evaluated the EDL task using the CEAF (Luo, 2005) metric for mea-
suring precision, recall, and F1. The reason is that entity linking is alternatively
understood as a cross-document co-reference resolution task, in which the set of
tuples is partitioned by the assigned entity ID. This metric finds the optimal align-
ment between system and gold standard clusters and then evaluates precision and
recall micro-averaged over mentions.

2.4 ImageNet Object Detection

Object Detection is a well known Computer Vision problem that involves
detecting instances of semantic objects of a certain category in images and videos.
The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a widely
known annual competition in computer vision and has become the standard bench-
mark for large-scale object recognition (Russakovsky et al., 2015). The ImageNet
dataset is organized according to the WordNet hierarchy, and thus the object cat-
egories are WordNet synsets. The goal of the ImageNet object detection task is
to detect all instances of object categories (out of the 200 predefined categories)
present in the image and localize them by providing coordinates of the axis-aligned
bounding boxes for each instance. The object detection problem differs from the
image classification problem that involves classifying the entire image into one of
the 1000 predefined object categories. Figure 2.5 illustrates the difference between
image classification and object detection.

The object detection corpus is divided into training, validation and test sets.
The training set consists of approximately 450K images including both positive
and negative instances, annotated with bounding boxes; the validation set consists
of around 20K images also annotated for all object categories and the test set has
50K images. The output for the task is the image ID, the object category (1-200),
a confidence score, and the coordinates of the bounding box. In case of multiple

19

Figure 2.5: Example comparing image classification and object detection.

instances in the same image, each instance is mentioned separately.
Because of the massive scale of the ImageNet dataset, almost all participat-

ing teams employ deep learning for image classification. For the object detection
challenge in 2015, the top performing team used a deep residual net (He et al.,
2016) and several other teams deployed a version of faster R-CNN (Region based
Convolutional Neural Networks) with selective search (Ren et al., 2015). Faster R-
CNN is a more efficient variant of fast R-CNN (Girshick, 2015) that first uses Re-
gion Proposal Networks (RPN) to train an end-to-end network for generating region
proposals. There has been some work on stacking for multi-layer object recogni-
tion (Peppoloni et al., 2014) but our work is the first to use stacking for ensembling
object detectors, and we obtain significant improvements over the component sys-
tems.

For the ImageNet challenge, the object detection task is evaluated using the
average precision (AP) on a precision-recall curve. The predicted bounding box
for a detection is considered correct if its intersection over union with the ground
truth exceeds a threshold of 0.5 (Russakovsky et al., 2015). The official scorer gives
the average precision for each of the 200 classes along with the overall median and
mean AP.

20

2.5 Visual Question Answering (VQA)

Visual Question Answering (VQA) is the task of addressing open-ended
questions about images. It has attracted significant attention in recent years (An-
dreas et al., 2016a; Goyal et al., 2016; Agrawal et al., 2016; Teney et al., 2017). The
DAtaset for QUestion Answering on Real-world images (DAQUAR) was the first
dataset and benchmark for this task (Malinowski and Fritz, 2014). Recently, many
synthetic datasets such as the CLEVR (Johnson et al., 2017) and NLVR (Suhr et
al., 2017) have also been proposed for the visual question answering problem. The
CLEVR dataset consists of questions that require elementary reasoning on synthetic
images while the NLVR dataset consists of natural language sentences describing
the image and systems must output whether the sentence correctly describes the
image or not. The Visual Question Answering (VQA) dataset (Antol et al., 2015)
is the most well-known and widely used dataset for the VQA task. The dataset
consists of real images as well as abstract scenes. Given an image and a natural lan-
guage question about that image, the task is to provide an accurate natural language
answer. VQA requires visual and linguistic comprehension, language grounding
capabilities as well as common-sense knowledge. Figure 2.6 shows examples of
answers given by humans when they were shown just the question versus both the
image and the question. It is clear that the VQA task is multi-modal and therefore
challenging.

A variety of methods to address the challenges of VQA have been developed
in recent years (Fukui et al., 2016; Xu and Saenko, 2016; Lu et al., 2016; Chen et
al., 2015). The vision component of a typical VQA system extracts visual features
using a deep convolutional neural network (CNN), and the linguistic component en-
codes the question into a semantic vector using a recurrent neural network (RNN).
An answer is then generated conditioned on the visual features and the question vec-
tor. Figure 2.7 demonstrates a generic neural network on a VQA example. Several
deep learning models have been developed that combine a computer vision com-
ponent with a linguistic component in order to solve the VQA challenge. Some of
these models also use data-augmentation for pre-training. The iBowIMG (Zhou et

21

Figure 2.6: Examples of VQA questions (black) and answers given by humans
when looking at the image (green) and when not looking at the image (blue).

al., 2015b), the DPPNet (Noh et al., 2016), the Neural Module Networks (NMNs)
(Andreas et al., 2016b), the LSTM (Antol et al., 2015), the HieCoAtt (Lu et al.,
2016) and the MCB (Fukui et al., 2016) are some of the deep learning models that
attempt to solve VQA. The iBowIMG uses image features with the bag-of-word
question embedding in a softmax classifier resulting in performance comparable to
other models that use deep or recursive neural networks. The DPPNet, on the other
hand, learns a CNN with some parameters predicted from a separate parameter
prediction network that uses a Gated Recurrent Unit (GRU) to generate a question
representation and maps the predicted weights to a CNN via hashing. The DPPNet
uses external data in addition to the VQA dataset to pre-train the GRU. The GRU
is initialized with the skip-thought (Kiros et al., 2015) vector model trained on a
book-collection corpus containing more than 74M sentences. Another well-known
VQA model is the Neural Module Network (NMN) (Andreas et al., 2016b) that
generates a neural network on the fly for every individual image and question. This
is done using various sub-modules based on the question and composing these to
generate the neural network, e.g., the find[x] module outputs an attention map
for detecting x. The question is first parsed into a symbolic expression and using

22

Figure 2.7: A CNN-RNN combination on a VQA example (Lu et al., 2016).

these expressions, modules are composed into a sequence to answer the query. The
whole system is trained end-to-end through backpropagation.

The LSTM model uses the VGGNet as a CNN and LSTM as an RNN. The
HieCoAtt system is similar to the LSTM except it uses co-attention at the level
of both image and question. The MCB model uses a 152-layer ResNet as a CNN
and LSTM as an RNN. It combines the image and question vector representations
using an outer product. A non-deep learning approach to VQA uses a Bayesian
framework to predict the form of the answer from the question (Kafle and Kanan,
2016).

The VQA challenge has two modalities for answering the questions: (i) open-
ended and (ii) multiple choice. For the open-ended task, the ground-truth answer
is collected from 10 different human subjects. The system generated answers are
evaluated using the following accuracy metric:

Accuracy = min

(
humans that provided that answer

3
, 1

)
(2.1)

That is, an answer is considered 100% accurate if at least 3 human subjects provided
that same answer. The multiple-choice questions have 18 candidate answers for
each question. These questions are also evaluated using the evaluation metric in
Equation 2.1.

23

2.6 Explainable AI (XAI)

Recently, with the development of large-scale datasets and powerful comput-
ers, there has been a dramatic success in several machine learning applications es-
pecially in the domains of computer vision and natural language processing. These
advancements have resulted in the production of systems that perceive, learn, de-
cide and act autonomously. However, these systems are limited in their effective-
ness because they do not produce any explanation for their decisions and actions.
The state-of-the-art systems in many AI applications use ensembles of deep neural
networks that are even more difficult to interpret. Explanation provides a means for
AI systems to convey their strengths and weakness and enables them to provide a
rationale for their decision, especially, when they fail in a spectacular manner. Tra-
ditionally, transparency has always been at odds with performance. Systems that
are simple are more transparent but have poor performance compared to complex
systems with a large number of parameters whose decisions are much more difficult
to explain.

Beyond academia, the European Union’s General Data Protection Regula-
tion (GDPR) now includes the “right to explanation” which states that a user can ask
for an explanation of an algorithmic decision that was made about them (Goodman
and Flaxman, 2017). Figure 2.8 shows the concept underlying XAI as described in
Gunning (2016).

In this thesis, our goal for generating explanations is not just to build trust
between humans and AI systems, but to use explanations in turn for improving
the performance of AI applications. Generating explanations for AI systems is,
without a doubt, a challenging problem but research on explainable AI systems is
incomplete without a good evaluation metric to measure their effectiveness and use-
fulness. Research on XAI is therefore divided into two main categories – (i) gener-
ating explanations and (ii) evaluating explanations. We review the background and
related work in each of these categories below.
Generating Explanations: Ensembles of deep learning models have been used
widely on several real-world vision and language problems. Despite their success,

24

Figure 2.8: XAI concept as described in Gunning (2016).

ensembles lack transparency and are unable to explain their decisions. On the other
hand, humans can justify their decisions in natural language as well as point to
the visual evidence that supports their decision. AI systems that can generate ex-
planations supporting their predictions have several advantages (Johns et al., 2015;
Agrawal et al., 2016). When an AI system is weaker than humans, the goal of ex-
planation is to identify failure modes (Agrawal et al., 2016). For AI systems that
are on par with human performance, explanation serves to establish users’ trust.
Finally, when an AI system is significantly better than humans, explanation can
be used to teach humans to make better decisions (Johns et al., 2015). This has
motivated recent work on explainable AI systems, particularly in computer vision
(Antol et al., 2015; Goyal et al., 2016; Park et al., 2016). Early work on explainable
models used a template-based approach (Lane et al., 2005). Recent work uses more
sophisticated methods for generating explanations. Hendricks et al. (2016) devel-
oped a deep network to generate natural language justifications for a fine-grained
object classifier. Their model focuses on the discriminating properties of the object
in the image, jointly predicts a class label and also explains why the predicted label

25

Figure 2.9: Sample explanations produced by Hendricks et al. (2016) on the fine-
grained bird species classification dataset.

is appropriate for the image. Figure 2.9 shows a sample of explanations produced
by Hendricks et al. (2016) on a fine-grained bird species classification dataset (Wah
et al., 2011).

Explanations can also be model-agnostic as shown by LIME (Local Inter-
pretable Model-agnostic Explanations) which trains and presents local sparse mod-
els of how predictions change when inputs are perturbed (Ribeiro et al., 2016).
A method for explaining differentiable models by selectively penalizing their in-
put gradients has been demonstrated on toy and real-world datasets (Ross et al.,
2017). Ramanishka et al. (2017) created a model for inferring top-down attention
from captions. A body of work has proposed methods to visually explain deci-
sions. Berg and Belhumeur (2013) use discriminative visual patches, whereas Zhou
et al. (2015a) aim to understand intermediate features which are important for end
decisions by naming hidden neurons that detect specific concepts. Selvaraju et al.
(2017) used a gradient-based localization approach called Grad-CAM for generat-
ing visual explanation. Figure 2.10 shows a sample of visual explanations generated
on some image-question pairs using the Hierarchical Co-attention (Lu et al., 2016)
VQA model. However, there has been no prior work on generating explanations
for ensembles of multiple AI systems. In this thesis, we propose algorithms for
ensembling visual explanations of deep learning models that can be used to explain
the decision of the ensemble. We demonstrate the success of our approach on the
challenging task of Visual Question Answering (VQA).
Evaluating Explanations: Evaluating explanations generated by AI systems is a
challenging problem and has attracted some attention in recent years. Although
crowd-sourced human evaluation has been typically used to evaluate explanations,
the actual metrics and approaches have differed widely across tasks and domains.

26

Figure 2.10: Visual explanations on sample VQA image-question pairs from Sel-
varaju et al. (2017)

Hendricks et al. (2016) used human experts on bird watching to evaluate explana-
tions for fine-grained bird classification and asked them to rank the image-explanation
pairs. On the other hand, Das et al. (2016) collect human attention maps for VQA
by instructing human subjects on Mechanical Turk (MTurk) to sharpen parts of a
blurred image that are important for answering the questions accurately. Typical
explanation evaluation metrics rely on annotated ground truth explanations (Park et
al., 2016; Goyal et al., 2016; Das et al., 2017a). Selvaraju et al. (2017) evaluated ex-
planations for image captioning by instructing human subjects on MTurk to select if
a machine generated explanation is reasonable or not based on the predicted output.
In this thesis, we propose two new evaluation approaches that are not dependent on
ground truth explanations. Our work evaluates explanations for VQA that does not
rely on human-generated explanation. This is important because research shows
that machines and humans do not have the same “view” of visual explanations (Das
et al., 2017a).

27

2.7 Chapter Summary

In this chapter, we reviewed the background and related work relevant to this
thesis. We discussed a variety of ensembling techniques in machine learning. We
also discussed in detail four different AI applications. Two were in the domain of
natural language processing – Slot-filling and Entity Linking. The Object detection
task is in the domain of computer vision, while the Visual Question Answering task
requires both language and vision understanding.

The input to all four tasks is a massive corpus of text or images, and all
the tasks require structured outputs. We also demonstrated through examples the
various challenges posed by these tasks. As discussed in this chapter, all the four
problems are active areas of research and have plenty of exciting new work.

28

Chapter 3

Stacking with Auxiliary Features

This chapter introduces a new ensembling algorithm called Stacking With
Auxiliary Features (SWAF) that can be applied to classification problems and prob-
lems with structured outputs. It also discusses two types of auxiliary features – the
provenance features and the instance features. Parts of the work in this chapter have
been published in (Rajani and Mooney, 2017b). All work in this chapter constitutes
original contributions.

3.1 Chapter Overview

Ensembling multiple systems is a well known standard approach to improv-
ing accuracy in machine learning (Dietterich, 2000) and ensembles have been ap-
plied to a wide variety of problems in all domains of artificial intelligence including
natural language understanding. However, these techniques do not learn to ade-
quately discriminate across the component systems and thus are unable to integrate
them optimally. Therefore, combining systems intelligently is crucial for improving
overall performance.

In this chapter, we consider the general machine learning problem of com-
bining structured outputs from multiple systems to improve accuracy using an al-
gorithm we proposed called stacking with auxiliary features (SWAF). We used two
types of auxiliary features - those that enable the stacker to discriminate across com-
ponent systems, which we called the provenance features, and those that enable the
stacker to discriminate across instances, which we called the instance features. We
also propose a variation of SWAF that can ensemble systems that do not have train-
ing data, in an unsupervised manner.

29

3.2 Prior Work

Using ensembles of multiple systems is a standard approach to improving
accuracy in machine learning (Dietterich, 2000). Ensembles have been applied to
a wide variety of problems in natural language processing, including parsing (Hen-
derson and Brill, 1999), word sense disambiguation (Pedersen, 2000), and senti-
ment analysis (Whitehead and Yaeger, 2010).

Meta-learning addresses the question of how can we improve the perfor-
mance of learning algorithms by using metadata about learning (Vilalta and Drissi,
2002). Stacking is a type of meta-learning in which a meta-classifier is learned to
combine the outputs of multiple underlying systems (Wolpert, 1992). The stacker
learns a classification boundary based on the confidence scores provided by indi-
vidual systems for each possible output. However, many times the scores produced
by systems are not probabilities or not well calibrated and cannot be meaningfully
compared. In such circumstances, it is beneficial to also have other reliable auxil-
iary features, as in our SWAF approach.

3.3 Stacking With Auxiliary Features (SWAF)

Stacking is a popular ensembling methodology in machine learning and has
been very successful in many applications including the top performing systems in
the Netflix competition (Sill et al., 2009). The idea is to employ multiple learners
and combine their predictions by training a “meta-classifier” to weight and combine
multiple models using their confidence scores as features. By training on a set of
supervised data that is disjoint from that used to train the individual models, it
learns how to combine their results into an improved ensemble model. As for the
meta-classifier, we employ a wide range of approaches including a L1-regularized
SVM with a linear kernel (Fan et al., 2008), SVM with an RBF kernel as well as a
neural network. Our choice of the meta-classifier depends on the number and type
of auxiliary features which in turn depend on the application at hand.

30

In a final post-processing step, the classifications considered “correct” by
the meta-classifier are kept while the others are discarded. We use stacking as our
ensembling algorithm and extend it to make it even more powerful by using task-
specific features which we call as auxiliary features.

Stacking with Auxiliary Features (SWAF) (Rajani and Mooney, 2017b) is a
type of ensembling algorithm which learns to combine outputs of multiple systems
using features of the component models and current problem as context. The intu-
ition behind SWAF is that certain systems are better at certain input types and if this
can be learned then the classifier can make better decisions on the input instances.
We use two types of auxiliary features:

(i) Provenance features for discriminating between component models. The
idea behind using the provenance features is that an output is reliable if not
just multiple systems agree on it but they also agree on the provenance of the
output. The exact form of provenance is specific to the task (e.g., a region in a
text or an image) and captures “where” the system got its answer. Provenance
indicates the origin of the generated output for each system and can be used
to measure the reliability of system outputs.

(ii) Instance features for discriminating between instances. The idea behind
using the instance features is that certain systems are better at certain instance
types.

Stacking with auxiliary features can be successfully applied to any problem whose
output instances have confidence scores and optionally provenance that justifies
the output. Figure 3.1 gives a generalized overview of our approach to combining
multiple system outputs. The SWAF algorithm requires identifying appropriate in-
stance and provenance features for a given task. We discuss these auxiliary features
in more detail in Chapter 4 and Chapter 5 where we demonstrate SWAF on well
known natural language and vision problems respectively.

31

System	1	

System	2	

System	N	

Trained		
Meta-classifier	

Provenance	
Features	

conf	2	

conf	N	 Accept?	

System	N-1	 conf	N-1	

conf	1	

Auxiliary	Features	

Instance	
Features	

Figure 3.1: Our SWAF approach to combining system outputs using confidence
scores and two types of auxiliary features for improving prediction.

3.4 Combining Supervised and Unsupervised Ensembles
using SWAF

In our approach to using SWAF, in order to train the stacker, we are only
able to use systems that are either open source or whose training data is available
to us. However, in some situations, we would like to ensemble systems for which
we have no performance data, i.e., the output of a system applied to a particular
dataset so that we can do experiments without having to run the system. For exam-
ple, due to privacy, some companies or agencies may be willing to share their final
model’s output or meta-level model output but not the raw data itself due to pri-
vacy protection. Also, it is not always possible to have access to the actual models
themselves.

Simple methods such as voting permit “unsupervised” ensembling but fail to
exploit supervision for those systems for which we do have training data. Therefore,
we presented an approach that utilizes supervised and unsupervised ensembling to
exploit the advantages of both. We first use unsupervised ensembling such as con-

32

Sup	System	1	

Sup	System	2	

	Sup	System	N	

Unsup	System	1	

Trained		
Meta-classifier	

Auxiliary	Features	

conf	1	

conf	2	

conf	N	

Unsup	System	2	 Aggregated	
conf	

Unsup	System	M	
Accept?	

Constrained	OpBmizaBon	

Figure 3.2: Given N systems with training data and M systems without training
data, our variant of SWAF approach combines the unsupervised ensemble of M
systems with N supervised systems.

strained optimization (Wang et al., 2013) to combine systems without training data,
and then used stacking to combine this ensembled system with other systems for
which training data is available. Figure 3.2 illustrates our system which trains a final
meta-classifier for combining multiple systems using confidence scores and other
auxiliary features depending on the task. The top half of the figure illustrates en-
sembling multiple systems with historical training data using the supervised SWAF
approach while the bottom half of the figure shows the ensembling of the systems
without historical training data. We demonstrate this variant of SWAF on two nat-
ural language understanding problems in Chapter 4.

33

3.5 Chapter Summary

In this chapter, we introduced stacking with auxiliary features (SWAF), a
novel approach to ensemble multiple diverse system outputs. The auxiliary features
enable the system to learn to appropriately use provenance and instance information
to aid the optimal integration of multiple systems.

34

Chapter 4

Stacking with Auxiliary Features for
Natural Language Processing

This chapter demonstrates the application of stacking with auxiliary features
to two well-known natural language processing tasks – relation extraction and entity
linking. Parts of the work in this chapter have been published in (Rajani et al.,
2015), (Rajani and Mooney, 2016) and (Rajani and Mooney, 2017b). All work in
this chapter constitutes original contributions.

4.1 Chapter Overview

As discussed in Chapter 3, Stacking with Auxiliary Features (SWAF) is a
type of ensembling algorithm which learns to combine outputs of multiple systems
using features of the component models and current problem as context. The aux-
iliary features aid the stacker to effectively integrate multiple individual models by
appropriately using instance and provenance information.

In this chapter, we demonstrate our SWAF approach to multilingual infor-
mation extraction as part of the knowledge base population (KBP) problem. In
particular, we used the SWAF approach in the (i) Slot Filling (SF) (also known as
relation extraction) and (ii) Entity Discovery and Linking (EDL) tasks conducted
by NIST annually as part of the Text Analysis Conference (TAC).1

We also demonstrate a variant of SWAF, that was introduced in Chapter 3,
that can ensemble systems which do not have training data in an unsupervised man-
ner. We obtain state-of-the-art results on both the KBP tasks using SWAF and beat
our own previous performance on both these tasks by also adding the unsupervised
ensemble.

1https://tac.nist.gov/

35

https://tac.nist.gov/

4.2 Prior Work

As discussed in Section 2.2, stacking is a well-known ensembling approach
that combines outputs of multiple diverse systems using their confidence scores
(Wolpert, 1992). The use of stacked generalization for information extraction has
been demonstrated to outperform both majority voting and weighted voting meth-
ods (Sigletos et al., 2005). In relation extraction, a stacked classifier effectively
combines a supervised, closed-domain conditional random field (CRF) based re-
lation extractor with an open-domain CRF Open IE system (Banko et al., 2008).
We were the first to introduce novel auxiliary features to the stacking approach and
demonstrate stacking with auxiliary features on KBP.

We would sometimes like to ensemble systems for which we have no his-
torical performance data. Simple methods such as voting permit “unsupervised”
ensembling, and several more sophisticated methods have also been developed for
this scenario (Wang et al., 2013). Our variant of SWAF is able to exploit supervision
for systems that do have training data. It utilizes both supervised and unsupervised
ensembling to exploit the advantages of both. We first use unsupervised ensembling
to combine systems without training data, and then use stacking with auxiliary fea-
tures to combine this ensembled system with other systems with available training
data.

4.3 Stacking with Auxiliary Features for Relation Extraction

Many end-to-end relation extraction systems are built using several underly-
ing models that target specific sub-problems and are combined using ensembling.
Given a set of query entities and a fixed set of slots, the goal of ensembling is to ef-
fectively combine the output of different slot-filling systems. As input, an ensemble
takes the output of individual systems containing slot fillers and additional informa-
tion such as provenance and confidence scores. The output of the ensembling sys-
tem is similar to the output of an individual system, but it productively aggregates
the slot fillers from different systems. For example, the bootstrapped self-training

36

model by Angeli et al. (2015) uses pattern-based methods for improving precision
as well as distant supervision for improving recall in relation extraction. These
models are then combined using voting to obtain the final output. However, voting
is not very effective as it ignores the subtleties of the underlying models. We, there-
fore, proposed a more intelligent approach to ensembling component models that
uses stacking as a way of ensembling information extractors.

As discussed in Chapter 3, we use two types of auxiliary features – (i) prove-
nance features and (ii) instance features. These features are task-dependent and we
now discuss each of these in detail in the context of relation extraction.

4.3.1 Provenance Features

Each system that extracts a slot-fill for a query also provides provenance
information about the fill. The filler provenance localizes the extracted slot-fill in
a corpus of documents. Every provenance has a docid and startoffset-endoffset

that gives information about the document and offset in the document from where
the slot fill has been extracted. Where a slot-fill was extracted from can tell a lot
about whether it is potentially correct or incorrect. This motivated us to use the
provenance information as a feature to the stacker.

We computed two types of provenance scores, first using the docid infor-
mation, and second, using the offset information. The document-based provenance
score is defined as follows. For a given query and slot, if N systems provide answers
and a maximum of n of those systems give the same docid in their filler provenance,
then the document provenance score for those n slot fills is n/N . Similarly, other
slot fills are given lower scores based on the fraction of systems whose provenance
document agrees with theirs. Since this provenance score is weighted by the num-
ber of systems that refer to the same provenance, it measures the reliability of a slot
fill based on the document from where it was extracted.

Our second provenance measure uses offsets. The degree of overlap among
the various systems’ offsets can also be a good indicator of the reliability of the slot
fill. The Jaccard similarity coefficient is a statistical measure of similarity between
sets. We extend the idea of Jaccard similarity to measure the degree of overlap

37

Figure 4.1: Suppose three systems extract fills from the string “Former President
Barack Obama” at offsets shown above, starting at offset zero. The offset prove-
nance feature for each system is calculated using Jaccard similarity measure applied
on substrings as demonstrated in this image.

between substrings extracted by systems in a document. Slot fills have variable
lengths and thus the provenance offset ranges are variable too. A metric such as the
Jaccard coefficient captures the overlapping offsets along with normalizing based
on the union and thus resolving the problem with variable offset ranges. For a given
query and slot, if N is the size of the set of systems that answer with the same docid

for their document provenance and substring(i) is a fill in the form of a substring
extracted by a system i, then the offset provenance (OP) score for a slot fill by a
system x is calculated as follows:

OPn =
1

|N| − 1

∑
i∈N,i 6=n

|substring(i) ∩ substring(n)|
|substring(i) ∪ substring(n)|

(4.1)

Figure 4.1 shows a cartoon example of calculating offset provenance score for three
systems. As per our definition, systems that extract slot fills from different docu-

38

ments for the same query slot have zero overlap among offsets. We note that the
offset provenance is always used along with the document provenance and is thus
useful in discriminating between slot fills extracted from the same document for the
same query slot. Like the document provenance score, the offset provenance score
is also a weighted feature and is a measure of the reliability of a slot fill based on
the offsets in the document from where it is extracted. Our approach does not need
access to the large corpus of documents from where the slot fills are extracted and
is thus very computationally inexpensive.

4.3.2 Instance Features

The idea behind using the instance auxiliary features is that some systems
are better at some sub-tasks. One could imagine that some systems are good at
extracting relations for certain slot types (e.g.: slot types that expect a location as
an output). Such information if available at the time of classification could be a deal
breaker. For example, the stacker could learn not to trust an output for a slot type
‘per:date of birth’ from a system that is not good at extracting dates or numbers in
general. The instance features enable the stacker to learn such patterns using task-
specific information. For the slot filling task, we use the one-hot encoding of the
slot type (e.g., per:age) as instance features.

4.3.3 Post-processing

We perform final post-processing on the classified outputs obtained from the
stacker. This step ensures that the final output appears as if it was generated by an
individual system and there is no conflicting information. Each list-valued slot fill
that is classified as correct is included in the final output. For single-valued slots,
if multiple fills are classified as correct for the same query and slot type, we only
include the fill with the highest meta-classifier confidence.

39

4.3.4 Eliminating Slot-Filler Aliases

When combining the output of different SF systems, it is possible that some
slot-filler entities might overlap with each other. A system A could extract a filler
F1 for a slot S while another system B extracts another filler F2 for the same slot
S. If the extracted fillers F1 and F2 are aliases (i.e. different names for the same
entity) and not combined into one, the precision of the final system is penalized for
producing duplicate outputs.

In order to eliminate aliases from the output of the ensembled system, we
employed a technique derived by inverting the scheme used by Roth et al. (2013)
for query expansion. The authors used a Wikipedia anchor-text model (Roth and
Klakow, 2010) to generate aliases for given query entities. By including aliases
for query names, the systems increase the number of candidate sentences fetched
for the query. To eliminate filler aliases, we applied the same technique used to
generate aliases for all slot fillers of a given query and slot type. Given a slot filler,
we obtained the Wikipedia page that is most likely linked to the filler text based
on query string matching. Then, we obtained the anchor texts and their respective
counts from all other Wikipedia pages that link to this page. Using these counts, we
choose top 10 anchor texts as aliases for the given slot filler. Using the generated
aliases, we then verified if any of the slot fillers are redundant with respect to these
aliases. This scheme is not applicable to slot types whose fillers are not entities
(like date or age). Therefore, simpler string-based matching schemes are used to
eliminate redundancies for these slot types.

4.3.5 Experimental Evaluation on 2014 KBP Slot-Filling

This section describes a comprehensive set of experiments evaluating the
supervised ensembling approach on the 2014 KBP English Slot Filling (ESF) task.
Our experiments are divided into two subsets based on the datasets they employed.
Since our stacking approach relies on historical training data, we used the 2013
Slot Filler Validation (SFV) data for training and build a dataset of one run for
every team that participated in both the 2013 and 2014 competitions and called it

40

Figure 4.2: Our system pipeline for end-to-end development of the SWAF ensemble
for the KBP SF task.

the common systems dataset. As described in Section 2.3.1, the SFV task involved
ensembling/filtering outputs from multiple slot filling systems. There were 10 com-
mon teams of the 17 teams that participated in ESF 2014. The other dataset was
composed of all 2014 SFV systems (including all runs of all 17 teams that partici-
pated in 2014). There were 10 systems in the common systems dataset, while there
were 65 systems in the all 2014 SFV dataset. Figure 4.2 shows the pipeline for our
SWAF approach on the 2014 KBP SF task.

We compared our stacking approach to voting and union ensembling base-
lines. Since both voting and union are unsupervised ensembling baselines, we eval-
uated on both the common systems dataset as well as the entire 2014 SFV dataset.
The Union takes the combination of values for all systems to maximize recall. If
the slot type is list-valued, it classifies all slot fillers as correct and always includes
them. If the slot type is single-valued, if only one system attempts to answer it,
then it includes that system’s slot fill else if multiple systems attempt, then it only
includes the slot-fill with the highest confidence value as correct and discards the
rest.

For the Voting approach, we vary the threshold on the number of systems that
must agree on a slot-fill from one to all. This gradually changes the system from
the union to intersection of the slot fills, and we identify the threshold that results in
the highest F1 score. We learned a threshold on the 2013 SFV dataset (containing
52 systems) that results in the best F1 score, thereafter, we used this threshold for
the voting baseline on 2014 SFV dataset. The third baseline we compared to is an
“oracle threshold” version of Voting. We did the same thing we did for 2013 dataset
for the common systems dataset. However, since the best threshold for 2013 may
not necessarily be the best threshold for 2014, we identified the best threshold for

41

Common systems dataset All 2014 SFV systems dataset

Figure 4.3: Precision-Recall curves for identifying the best voting performance on
the two datasets

2014 by plotting a Precision-Recall curve and finding the best F1 score for the
voting baseline. Figure 4.3 shows the Precision-Recall curve for the two datasets
for finding the best possible F1 score using the voting baseline. We found that for
the common systems dataset, a threshold of 3 (of 10) systems gave the best F1
score, while for the all 2014 SFV dataset, a threshold of 10 (of 65) systems gave
the highest F1. We note that this gave an upper-bound on the best results that can
be achieved with voting, assuming an optimal threshold is chosen. Since the upper-
bound could not be predicted without using the 2014 dataset, this baseline has an
unfair advantage. Table 4.1 shows the performance of all 3 baselines on the all 2014
SFV systems dataset. The reason we evaluated the ensemble baselines on the all
2014 SFV systems dataset is to highlight that our SWAF approach beats all these
ensemble baselines even when it uses only a fraction of the data, that is the common
systems dataset, as discussed below.

We performed various ablations of the stacking algorithm by training on the
2013 data and testing on the 2014 data for the common systems. The first approach
only used the confidence scores of the underlying systems as input for classifying an

42

Baseline Precision Recall F1

Union 0.067 0.762 0.122
Voting (threshold learned on 2013 data) 0.641 0.288 0.397

Oracle Voting (optimal threshold on 2014 data) 0.547 0.376 0.445

Table 4.1: Performance of baselines on all 2014 SFV dataset (65 systems)

Approach Precision Recall F1

Union 0.176 0.647 0.277
Best ESF system in 2014 (Stanford) 0.585 0.298 0.395

Voting (threshold learned on 2013 data) 0.694 0.256 0.374
Oracle Voting (optimal threshold on 2014 data) 0.507 0.383 0.436

Stacking 0.606 0.402 0.483
Stacking + Slot-type 0.607 0.406 0.486

Stacking + Provenance (document) + Slot-type 0.653 0.400 0.496
Stacking + Provenance (document and offset) + Slot-type 0.541 0.466 0.501

Table 4.2: Performance on the common systems dataset (10 systems) for various
configurations. All approaches except the Stanford system are our implementations.

instance. The second approach used the slot type along with the confidence scores.
The KBP slot-filling task had approximately 40 slot types for each query. This al-
lowed the system to learn different evidence-combining functions for different slots
if the classifier found that useful. Our third approach included document prove-
nance feature and our fourth approach used the offset provenance in addition to the
other features. We used for the L1-regularized SVM with a linear kernel (other
classifiers gave similar results) for training. Table 4.2 gives the performance of all
our supervised approaches as well as our unsupervised baselines for the common
systems dataset.

Systems change from one year to another and training on previous year’s
data might not be very intuitive. In order to have a better understanding of this,
we plot a learning curve by training on different sizes of the 2013 data and then
evaluating on the 2014 data for the common systems. Figure 4.4 shows the learning
curve thus obtained. Although there are certain proportions of the dataset when the

43

Figure 4.4: Learning curve for training on 2013 and testing on 2014 common sys-
tems dataset

F1 score drops which we suspect is due to overfitting 2013 data, there is still a strong
correlation between the 2013 training data size and F1 score on the 2014 dataset.
Thus we can infer that training on 2013 data is useful even though the 2013 and
2014 data are fairly different. Although the queries change, the common systems
remain more-or-less the same and stacking enables a meta-classifier to weigh those
common systems based on their 2013 performance.

The TAC KBP official scoring key for the ESF task includes human anno-
tated slot fills along with the pooled slot fills obtained by all participating systems.
However, Sammons et al. (2014) use an unofficial scoring key in their paper that
does not include human annotated slot fills. In order to compare to their results, we
also present results using the same unofficial key. Table 4.3 gives the performance
of our baseline systems on the 2014 SFV dataset using the unofficial key for scor-
ing. We note that our union does not produce a recall of 1.0 on the unofficial scorer
due to our single-valued slot selection strategy for multiple systems. As discussed
earlier for the single-valued slot, we include the slot-fill with the highest confidence

44

Baseline Precision Recall F1

Union 0.054 0.877 0.101
Voting (threshold learned on 2013 data) 0.637 0.406 0.496
Voting (optimal threshold for 2014 data) 0.539 0.526 0.533

Table 4.3: Baseline performance on all 2014 SFV dataset (65 systems) using unof-
ficial scorer

Approach Precision Recall F1

Union 0.177 0.922 0.296
Voting (threshold learned on 2013 data) 0.694 0.256 0.374
Voting (optimal threshold for 2014 data) 0.507 0.543 0.525

Best published SFV result in 2014 (UIUC) 0.457 0.507 0.481
Stacking 0.613 0.562 0.586

Stacking + Relation 0.613 0.567 0.589
Stacking + Provenance(document) 0.498 0.688 0.578

Stacking + Provenance(document) + Slot-type 0.659 0.56 0.606
Stacking + Provenance(document and offset) + Slot-type 0.541 0.661 0.595

Table 4.4: Performance on the common systems dataset (10 systems) for various
configurations using the unofficial scorer. All approaches except the UIUC system
are our implementations.

(may not necessarily be correct) and thus may not match the unofficial scorer.
Table 4.4 gives the performance of all our supervised approaches along with

the baselines on the common systems dataset using the unofficial key for scoring.
UIUC is one of the two teams participating in the SFV 2014 task and the only team
to report results, but they report 6 different system configurations and we show their
best performance.

Our results indicate that stacking with provenance information and slot type
gives the best performance. Our stacking approach that used the 10 systems com-
mon between 2013 and 2014 also outperformed the ensembling baselines that had
the advantage of using all 65 of the 2014 systems. Our stacking approach would
have presumably performed even better if we had access to 2013 training data for
all 2014 systems. Of course, the best-performing system for 2014 did not have

45

access to the pooled slot fills of all participating systems. Although pooling the
results has an advantage, naive pooling methods such as the ensembling baselines,
in particular, the voting approach, do not perform as well as our stacked ensem-
bles. Our best approach beats the best baseline for both the datasets by at least 6
F1 points using both the official and the unofficial scorer. As expected the Union

baseline has the highest recall. Among the supervised approaches, stacking with
document provenance produced the highest precision and is significantly higher
(approximately 5%) than the approach that produced the second highest precision,
stacking with just the slot-type auxiliary feature.

4.3.6 Experimental Evaluation on Cold Start Slot Filling (CSSF)

In 2015, NIST replaced the slot-filling task with the cold start slot filling
(CSSF) task. The task became more challenging because the queries used were
entities that did not have a Wikipedia entry. The CSSF task also introduced inverse
of each slot type in the ontology and evaluation queries could take one of the two
forms – single-hop as in the original slot-filling task or multiple-hops. Further, in
2016, the CSSF task became cross-lingual and was extended to two new languages,
Spanish and Chinese, apart from English. We participated in both 2015 and 2016
versions of the CSSF task using our SWAF approach. We used the output of the
shared systems from the previous years’ iteration of the competition for training
and the current year’s output as the test. We had 10 shared systems between 2014
and 2015 and 8 shared systems between 2015 and 2016.

The 2015 CSSF task had a much smaller corpus of shorter documents com-
pared to the previous year’s slot-filling corpus (Ellis et al., 2015; Surdeanu and Ji,
2014). Thus, the provenance feature of Rajani et al. (2015) did not sufficiently cap-
ture the reliability of a slot fill based on where it was extracted. So, we introduced a
new auxiliary feature. Slot filling queries were provided to participants in an XML
format that included the query entity’s ID, name, entity type, the document where
the entity appears, and beginning and end offsets in the document where that entity
appears. This allowed the participants to disambiguate query entities that could po-
tentially have the same name but refer to different entities. Below is a sample query

46

Method Precision Recall F1

Mixtures of Experts (ME) model 0.479 0.184 0.266
Oracle Voting baseline (3 or more systems must agree) 0.438 0.272 0.336
Top ranked CSSF system in 2015 (Angeli et al., 2015) 0.399 0.306 0.346

Stacking without auxiliary features 0.497 0.282 0.359
Stacking with just instance auxiliary features 0.498 0.284 0.360

Stacking with just provenance auxiliary features 0.508 0.286 0.366
Stacking with both provenance + instance auxiliary features 0.466 0.331 0.387

Table 4.5: Results on 2015 Cold Start Slot Filling (CSSF) task using the official
NIST scorer

from the 2015 task:

<query id=”CSSF15 ENG 006”>
<name>Walmart</name>
<docid>435</docid>
<beg>232</beg>
<end>238</end>
<enttype>org</enttype>
<slot0>org:date dissolved</slot0>

</query>

The 〈docid〉 tag refers to the document where the query entity appears, which we
will call the query document. We used an auxiliary feature that involved measur-
ing the similarity between this query document and the provenance document that
is provided by a given system. We represented the query and provenance docu-
ments as standard TF-IDF weighted vectors and used cosine similarity to compare
documents. Therefore, every system that provided a slot fill, also provided the
provenance for the fill and thus had a similarity score with the query document. If
a system did not provide a particular slot fill then its document similarity score is
simply zero. This feature is intended to measure the degree to which the system’s
provenance document is referencing the correct query entity.

Table 4.5 shows the performance on the 2015 version of the task. We evalu-
ated and compared various ablations of the auxiliary features for stacking and found

47

Method Precision Recall F1

Mixtures of Experts (ME) model 0.168 0.321 0.180
Oracle Voting baseline (4 or more systems must agree) 0.191 0.379 0.206
Top ranked CSSF system in 2016 (Zhang et al., 2016) 0.265 0.302 0.260

Stacking without auxiliary features 0.311 0.253 0.279
Stacking with just instance auxiliary features 0.257 0.346 0.295

Stacking with just provenance auxiliary features 0.252 0.377 0.302
Stacking with both provenance + instance auxiliary features 0.258 0.439 0.324

Table 4.6: Results on 2016 Cold Start Slot Filling (CSSF) task using the official
NIST scorer

Figure 4.5: Illustration of our SWAF approach on an instance of the CSSF dataset.
SWAF uses the auxiliary features including the text snippet above as provenance
for classifying the instance.

that using both the instance and provenance auxiliary features gives us the best per-
formance. We also compared our results to the Mixture of Experts (ME) ensembling
approach that has a similar intuition as the instance auxiliary features of SWAF, i.e.,
some systems are better at certain instance types than other systems. We note that
the dramatic drop in our performance when compared to the 2014 version of the
task, is because of the challenges posed by the introduction of the CSSF task. Also,
the NIST scorer had a very strict way of evaluating multiple-hop queries. So, for
evaluating responses for such multi-hop queries, if a system generated an incorrect
hop-0 response then all its hop-1 responses will be treated as incorrect even if
they were actually correct.

Table 4.6 shows the results obtained on the 2016 CSSF task. We observed

48

trends very similar to the 2015 results on the task. The CSSF task got more chal-
lenging each year and we found that the performance of all the systems was af-
fected. However, our SWAF approach consistently beat the top ranking individual
system. Figure 4.5 illustrates the SWAF approach on an actual instance of the CSSF
dataset. Two systems extract the fill ’NY Red Bulls’ for the entity ’Arsenal’ and
relation ’org:member of’ while one system extracts the fill ’Leeds United’ for the
same entity and relation. SWAF has learned to rely on system 2 based on the in-
stance and provenance auxiliary features.

We note that the top ranked systems we compare to in Table 4.5 and Ta-
ble 4.6 are not restricted to individual systems and could also be an ensemble. The
top-ranked indicates the best performance obtained amongst all individual and en-
semble systems in the competition.

4.4 Stacking with Auxiliary Features for Entity Linking

The knowledge base population (KBP) track of the Text Analysis Confer-
ence (TAC) conducted annually by NIST consisted of the entity discovery and link-
ing (EDL) task along with slot-filling. The EDL task was cross-lingual including
two foreign languages, Spanish and Chinese, along with English and was thus called
the tri-lingual entity discovery and linking (TEDL). We will refer to the TEDL task
generally as EDL unless specifically required. The objective of the EDL task is to
discover entities based on a supplied text corpus as well as link these entities to an
existing English knowledge base (KB) or cluster the mention with a NIL ID if the
system could not successfully link the mention to any entity in the KB (Ji et al.,
2015, 2016). A version of FreeBase (Bollacker et al., 2008) was used as the KB.

Our stacking with auxiliary features (SWAF) approach to EDL uses the KB
ID (or NIL ID) as the handle for ensembling across system outputs. Systems link
each detected entity mention, i.e., a string that references that entity in the text, to
a KB or NIL ID. EDL systems optionally provide confidence scores as part of the
output. In case a system does not provide confidence then we use a confidence score
of 1.0. Also, if a system did not detect a particular entity mention then we use a

49

confidence score of zero. For ensembling, we also need to define criteria for what
counts as the same entity mention when multiple systems detect it. So, two systems
are said to have detected and linked the same mention if the entity mentions overlap
to any extent.

4.4.1 Provenance Features

For provenance features, we use the provenance information for each gener-
ated output instance. Provenance indicates “where” the system found the output in
the source corpus. For EDL, if a system successfully links a mention to a KB ID,
then it must provide the mention provenance indicating the origin of the mention in
the corpus. The provenance is in the form of docid and start offset – end offset that
gives the source document in the corpus and offsets in that document.

The provenance feature for the EDL task is similar to the provenance fea-
ture of the slot-filling task. It measures the substring overlap of entity mentions
across systems using the Jaccard similarity coefficient. We used the aforementioned
criteria for deciding if a mention is same or different across multiple systems for
generating the provenance features.

4.4.2 Instance Features

We used a one-hot encoding of the entity type as instance features. There
were a total of five pre-defined entity types for the EDL task. They were person
(PER), organization (ORG), geo-political entity (GPE), facility (FAC) and location
(LOC).

Another instance feature we used is similar to the new auxiliary feature for
the CSSF task. The similarity measure between the entity’s KB document and its
mention document are used as features. For every KB ID that ever occurred in the
output, we created a pseudo-document consisting of the entity’s KB description
as well as all relations involving the entity that exist in the KB. The document
that systems provided as provenance was considered the mention document. We
used cosine similarity measure to compare an entity’s KB and mention document

50

Method Precision Recall F1

Oracle Voting baseline (4 or more systems must agree) 0.514 0.601 0.554
Top ranked TEDL system in 2015 (Sil et al., 2015) 0.693 0.547 0.611

Stacking without auxiliary features 0.729 0.528 0.613
Stacking with just instance auxiliary features 0.783 0.511 0.619

Stacking with just provenance auxiliary features 0.814 0.508 0.625
Stacking with both provenance + instance auxiliary features 0.814 0.515 0.630

Table 4.7: Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL) task
using the official NIST scorer and the CEAFm metric

represented as standard TF-IDF weighted vectors.

4.4.3 Post-processing

Once we obtain the decision on each input instance from the stacker, we
perform some final post-processing to produce output that is in the same format
as that generated by an individual system. For each entity mention link that is
classified as correct, if the link is a KB ID then we include it in the final output, but
if the link is a NIL ID then we keep it aside until all mention links are processed.
Thereafter, we resolve the NIL IDs across systems since NIL IDs for each system
are unique. We merge NIL clusters across systems into one if there is at least one
common entity mention among them. Finally, we give a new NIL ID for these
newly merged clusters.

4.4.4 Experimental Evaluation

We participated in the 2015 and 2016 versions of the EDL tasks. In both
years, there were 6 shared systems with the previous year’s iteration of the task. We
trained our meta-classifier on the previous year’s output of the common systems.
A L1 regularized linear SVM weighted by the number of instances for each class
worked best as a meta-classifier for stacking. The EDL evaluation uses the mention
CEAF metric (Ji et al., 2015, 2016) for measuring precision, recall and F1. This
metric finds the optimal alignment between system and gold standard clusters and

51

Method Precision Recall F1

Oracle Voting baseline (4 or more systems must agree) 0.588 0.412 0.485
Mixtures of Experts (ME) model 0.721 0.494 0.587

Top ranked EDL system in 2016 (Sil et al., 2016) 0.717 0.517 0.601
Stacking without auxiliary features 0.723 0.537 0.616

Stacking with just instance auxiliary features 0.752 0.542 0.630
Stacking with just provenance auxiliary features 0.767 0.544 0.637

Stacking with both provenance + instance auxiliary features 0.739 0.600 0.662

Table 4.8: Results on 2016 Tri-lingual Entity Discovery and Linking (EDL) task
using the official NIST scorer and the CEAFm metric

then evaluates precision and recall micro-averaged over mentions.
Table 4.7 and Table 4.8 show the results obtained on the 2015 and 2016

TEDL tasks respectively. Overall, we observe similar trends in performance in
both years. Unlike the CSSF task, the ME ensemble is able to beat the best voting
baseline for the TEDL task but it still does not beat the top-ranked system in the
competition. The performance of the ME algorithm deteriorates as the number of
component system increases. Thus, we can conclude that it is not robust to the
number of component systems. Figure 4.6 illustrates the SWAF approach on an
actual TEDL instance. Our approach has learned to rely on system 1 for the given
instance based on the instance and provenance auxiliary features.

We note that for Slot-Filling, adding the auxiliary feature lowers precision
but improves recall and is vice-versa for EDL. This trend is not much related to
SWAF but mainly depends on the number of component systems and input in-
stances. We have more component systems for slot-filling than EDL and these
systems themselves have high variation of precision and recall. Similarly, the num-
ber of input instances is much higher for EDL than slot-filling.

52

Figure 4.6: Illustration of our SWAF approach on an instance of the TEDL dataset.
One system linked the mention to a FreeBase entry for Hillary Clinton whereas the
other system linked the same mention to Bill Clinton. SWAF uses the auxiliary
features including the text snippet above as provenance for classifying the instance.

4.5 Combining Supervised and Unsupervised Ensembles
for Knowledge Base Population

In our approach to using SWAF for the two knowledge base population
(KBP) subtasks, we were only able to use shared systems that had historical training
data. However, in some situations, we would like to ensemble systems for which
we have no historical performance data. Towards this end, we use the variant of
SWAF proposed in Section 3.4 that first uses unsupervised ensembling to combine
systems without training data, and then uses stacking to combine this ensembled
system with other systems for which training data is available.

Using this new SWAF variant, we demonstrated new state-of-the-art results
on the two KBP subtasks – Cold Start Slot-Filling CSSF)2 and the Tri-lingual En-

tity Discovery and Linking (TEDL) (Ji et al., 2015). Our approach outperformed
the best individual system as well as other ensembling methods such as stacking
only the shared systems, which was our previous supervised approach (Rajani and
Mooney, 2017b). As part of this work, we also proposed a new auxiliary feature
for the CSSF and TEDL tasks and verified that incorporating them in the combined

2http://www.nist.gov/tac/2015/KBP/ColdStart/guidelines.html

53

http://www.nist.gov/tac/2015/KBP/ColdStart/guidelines.html

approach improved performance.

4.5.1 Unsupervised Ensembling Approach

Only 38 of the 70 systems that participated in CSSF 2015 also participated
in 2014, and only 24 of the 34 systems that participated in TEDL 2015 also partici-
pated in the 2014 EDL task. Therefore, many KBP systems in 2015 were new and
did not have past training data needed for the supervised approach. In fact, some of
the new systems performed better than the shared systems, for example, the hltcoe

system did not participate in 2014 but was ranked 4th in the 2015 TEDL task (Ji
et al., 2015). We first ensembled these unsupervised systems using the constrained
optimization approach described by Wang et al. (2013). Their approach is specific
to the English slot-filling task and also relies a bit on past data for identifying cer-
tain parameter values. Below we describe our modifications to their approach so
that it can be applied to both KBP tasks in a purely unsupervised manner.

The approach in Wang et al. (2013) aggregates the “raw” confidence values
produced by individual KBP systems to arrive at a single aggregated confidence
value for each output instance. Suppose that V1, . . . , VM are the M distinct values
produced by the systems and Ni is the number of times the value Vi is produced
by the systems. Then the aggregated confidence value is produced by solving the
following optimization problem:

min
0≤xi≤1

M∑
i=1

Ni∑
j=1

wij (xi − ci (j))
2 (4.2)

where ci denotes the raw confidence score, xi denotes the aggregated confidence
score for Vi and wij ≥ 0 is a non-negative weight assigned to each instance. Equa-
tion 4.2 ensures that the aggregated confidence score is close to the raw score as
well as proportional to the agreement among systems on a given output instance.
Thus if a system’s output instance is also produced by multiple other systems, it
would have a higher score than if it were not produced by any other system. Wang
et al. (2013) used the inverse ranking of the average precision previously achieved
by individual systems as the weights in the above equation. However, since we used

54

this approach for systems that did not have historical training data, we used uniform
weights across all unsupervised systems for both the tasks.

Equation 4.2 is subject to certain constraints on the confidence values de-
pending on the task. For the slot-filling task, there are two different constraints
based on whether the slot type is single-valued or list-valued. For single-valued
slot types, only one slot value can be correct and thus the constraint is based on the
mutual exclusion property of the slot values:

P (V1) + P (V2) + · · ·+ P (VM) ≤ 1 (4.3)

This constraint allows only one of the slot values to have a substantially
higher probability compared to rest. On the other hand, for list-valued slot types,
the RHS in the above equation is replaced by the value nc

n
where nc is the average

number of correct slot fills for that slot type across all entities in the previous year
and n is the total number of slot fills for that slot type across all entities. This
approach to estimating the number of correct values can be thought of as collective

precision for the slot type achieved by the set of systems. For the newly introduced
slot inverses in 2015, we used the same ratio as that of the corresponding original
slot type. Thus the slot type per:parents (new slot type) would have the same ratio
as that of per:children.

For the TEDL task, we used the KB ID for identifying an instance and there-
fore use the entity type for defining the constraint on the entity mentions. For each
of the entity types (PER, ORG, and GPE) we replaced the quantity on the right-hand
side in Equation 4.3 by the ratio of the average number of correct mentions for that
entity type in 2014 to the total number of mentions for that entity type, across all
entities. For the two new entity types introduced in 2015 (FAC and LOC), we used
the same ratio as that of GPE because of their semantic similarities.

The output from this approach for both tasks is a set of unique instances with
aggregated confidence scores across all unsupervised systems which go directly
into the stacker. Using the aggregation approach as opposed to directly using the
raw confidence scores allows the classifier to meaningfully compare confidence
scores across multiple systems although they are produced by very diverse systems.

55

Another technique for unsupervised ensembling that we experimented with in place
of the constrained optimization approach is the Bipartite Graph-based Consensus
Maximization (BGCM) approach by Gao et al. (2009) which was discussed in detail
in Section 2.2.

4.5.2 Combining Supervised and Unsupervised Ensembles

We combine the supervised and unsupervised methods using a stacked meta-
classifier as the final arbiter on a given input instance. The outputs from the super-
vised and unsupervised systems are fed into the stacker in a consistent format so
that there is a unique input tuple. For the CSSF task, it is in the form 〈query entity
+ relation, slot fill〉 and for the EDL task it is 〈KB or NIL ID, mention〉. Most
KBP teams submit multiple variations of their system. Before ensembling, we first
combine multiple runs of the same team into one. In this way, for the CSSF task,
we obtained 10 systems (one for each team) for which we have supervised data
for training stacking and 13 systems for which we used unsupervised ensembling.
Similarly, for the TEDL task, we obtained 6 teams that had 2014 training data and
4 teams that did not have training data.

The unsupervised method produced aggregated, calibrated confidence scores
which go directly into our final meta-classifier. We treat this combination as a sin-
gle system called the unsupervised ensemble. We add the unsupervised ensemble
as one additional system to the stacker giving us a total of 11 CSSF and 7 TEDL
systems respectively. Once we have extracted the auxiliary features for each of the
supervised systems and the unsupervised ensemble for both years, we trained the
stacker on 2014 systems and tested on the 2015 systems. The unsupervised ensem-
ble for each year is composed of different systems, but hopefully, the stacker learns
to combine a generic unsupervised ensemble with the supervised systems that are
shared across years. This allows the stacker to arbitrate the final correctness of an
input instance tuple, combining systems for which we have no historical data with
systems for which training data is available. To learn the meta-classifier, we used
an L1-regularized SVM with a linear kernel (Fan et al., 2008) (other classifiers gave
similar results).

56

Once we obtained the decisions from the stacker on every output instance,
we performed a final post-processing to get the aggregated output that looks like it
was produced by a single system and there are no conflicts. All the instances clas-
sified as correct by the classifier are kept while those that are classified as incorrect
are discarded. The correct instances are then processed based on the task at hand
and the process is exactly the same as with the SWAF approach.

4.5.3 New Auxiliary Feature

Our new auxiliary feature measures the document similarity between the
provenance documents that different systems provide. We note that this is different
from the auxiliary features introduced in Section 4.3.6 that measure the similarity
between query and provenance documents. Suppose for a given query and slot
type, n systems provide the same slot fill. For each of the n systems, we measure
the average document cosine similarity between the system’s provenance document
and those of the other n − 1 systems. Our previous document provenance feature
simply measured whether systems agreed on the exact provenance document. By
softening this to take into account the similarity of provenance documents, we hope
to have a more flexible measure of provenance agreement between systems. We
used these similarity features for both the CSSF as well as the TEDL tasks, except
that the TEDL task does not have a query document and so we used the FreeBase
entry for the mention. We created a pseudo document for each KB ID by appending
the FreeBase definition, description, and relations of the entity. In this way, the
new auxiliary feature captures similarity between the provenance document and the
pseudo FreeBase document.

4.5.4 Experimental Evaluation

Table 4.9 and Table 4.10 show the results obtained using stacking for com-
bining supervised and unsupervised ensembles on the CSSF and TEDL tasks re-
spectively. Our full system, which combines supervised and unsupervised ensem-
bling performed the best on both tasks. The 2015 iteration of TAC-KBP also in-

57

Methodology Precision Recall F1

Constrained optimization approach (Wang et al., 2013) 0.1712 0.3998 0.2397
Oracle Voting baseline (3 or more systems must agree) 0.4384 0.2720 0.3357
Top ranked CSSF system in 2015 (Angeli et al., 2015) 0.3989 0.3058 0.3462

SWAF approach (Rajani and Mooney, 2017b) 0.4656 0.3312 0.3871
BGCM for combining supervised and unsupervised systems 0.4902 0.3363 0.3989
Stacking using BGCM instead of constrained optimization 0.5901 0.3021 0.3996
Top ranked SFV system in 2015 (Rodriguez et al., 2015) 0.4930 0.3910 0.4361

Combined stacking and constrained optimization 0.4679 0.4314 0.4489

Table 4.9: Results on 2015 Cold Start Slot Filling (CSSF) task using the official
NIST scorer

cluded the Slot Filler Validation (SFV) task3 where the goal is to ensemble/filter
outputs from multiple slot filling systems. The top-ranked system in 2015 (Ro-
driguez et al., 2015) does substantially better than many of the other ensembling
approaches, but it does not do as well as our best performing system. The purely
supervised approach using auxiliary features of (Rajani and Mooney, 2017b) per-
forms substantially worse, although still outperforming the top-ranked individual
system in the 2015 competition. These approaches only use the common systems
from 2014, thus ignoring approximately half of the systems. The approach of Wang
et al. (2013) performs very poorly by itself, but when combined with stacking gives
a boost to recall and thus the overall F1. The performance of the constrained opti-
mization approach is obtained using purely unsupervised form of the method pro-
posed by Wang et al. (2013) but because it is used in a supervised way by SWAF (by
training on the unsupervised systems of the previous year), we obtain particularly
high recall.

The oracle voting baseline also performs very poorly indicating that naive
ensembling is not advantageous. For the TEDL task, the relative ranking of the
approaches is similar to those obtained for CSSF, proving that our approach is very
general and improves performance on two quite different and challenging problems.

Even though it is obvious that the boost in our recall was because of adding
the unsupervised systems, it isn’t clear how many new instance tuples were gen-

3http://www.nist.gov/tac/2015/KBP/SFValidation/index.html

58

http://www.nist.gov/tac/2015/KBP/SFValidation/index.html

Methodology Precision Recall F1

Constrained optimization approach (Wang et al., 2013) 0.445 0.176 0.252
Oracle Voting baseline (4 or more systems must agree) 0.514 0.601 0.554

Top ranked TEDL system in 2015 (Sil et al., 2015) 0.693 0.547 0.611
SWAF approach (Rajani and Mooney, 2017b) 0.813 0.515 0.630

BGCM for combining supervised and unsupervised outputs 0.810 0.517 0.631
Stacking using BGCM instead of constrained optimization 0.803 0.525 0.635

Combined stacking and constrained optimization 0.686 0.624 0.653

Table 4.10: Results on 2015 Tri-lingual Entity Discovery and Linking (TEDL) us-
ing official NIST scorer and CEAF metric

erated by these systems. We, therefore, evaluated the contribution of the systems
ensembled using the supervised approach and those ensembled using the unsuper-
vised approach, to the final combination for both the tasks. Figure 4.7 shows the
number of unique as well as common instance tuples that were contributed by each
of the approaches. The unique instances are those that were produced by one ap-
proach but not the other and the common instances are those that were produced by
both approaches. We found that approximately one-third of the input instances in
the combination came from the unique instances produced just by the unsupervised
systems for both the CSSF and TEDL tasks. Only about 22% and 15% of the total
input instances were common between the two approaches for the CSSF and TEDL
tasks respectively. Our findings highlight the importance of utilizing systems that
do not have historical training data.

4.6 Chapter Summary

We demonstrated that our approach is a general, effective approach by ap-
plying it to two challenging NLP problems requiring structured output: relation
extraction and entity linking. SWAF obtained very promising results on various
versions of both the tasks, outperforming the best component systems as well as
other ensembling methods. We achieved a new state-of-the-art on both the KBP
tasks approach with an overall F1 score of 32.4% and CEAFm F1 of 66.2% on the

59

0	
5000	

10000	
15000	
20000	
25000	
30000	
35000	

Supervised	 Unsupervised	 Combina7on	

CSSF	

Unique	pairs	 Common	pairs	

0	
20000	
40000	
60000	
80000	
100000	
120000	
140000	

Supervised	 Unsupervised	 Combina8on	

TEDL	

Unique	pairs	 Common	pairs	

Figure 4.7: Total number of unique and common input pairs contributed by the
supervised and unsupervised systems to the combination for the CSSF and TEDL
tasks respectively.

2016 KBP CSSF and EDL tasks respectively.
We observed that the well known mixture-of-experts method is not robust

because of its assumption that the underlying systems are trained on different fea-
ture sub-spaces, which is not always the case. On further analyzing the results
obtained by SWAF, we found that it does better when the component outputs differ
widely and have low confidences. The gain in performance from SWAF comes from
output decisions that are difficult to make without context; however, using auxiliary
features enables fusion of additional relevant information, allowing the stacker to
make the right decision.

We also introduced a novel Stacking-based approach to ensembling both
supervised and unsupervised systems and demonstrated promising results on the
two KBP tasks. The approach outperformed the top-ranked systems from both 2015
competitions as well as several other ensembling methods, achieving a new state-
of-the-art for both of these important, challenging tasks. We found that adding the
unsupervised ensemble along with the shared systems specifically increased recall
substantially.

60

Chapter 5

Stacking with Auxiliary Features for Computer Vision

This chapter demonstrates the application of stacking with auxiliary features
on two well-known vision tasks – object detection and visual question answering.
Parts of the work in this chapter have been published in (Rajani and Mooney, 2017b)
and (Rajani and Mooney, 2018). All work in this chapter constitutes original con-
tributions.

5.1 Chapter Overview

The previous chapter demonstrated the success of stacking with auxiliary
features (SWAF) on two very important natural language understanding problems
– information extraction and entity linking. In this chapter, we examine the SWAF
approach on well-known computer vision problems. In object detection, algorithms
produce a list of object categories present in the image along with an axis-aligned
bounding box indicating the position and scale of every instance of each object
category detected (Russakovsky et al., 2015). Object detection has been part of the
annual ImageNet Large Scale Visual Recognition Competition (ILSVRC). Visual
Question Answering (VQA) is also an annual competition at the intersection of
vision and language (Antol et al., 2015). Given an image and a natural language
question about the image, the task is to provide an accurate natural language answer.

SWAF (Rajani and Mooney, 2017b) is a type of ensembling algorithm which
learns to combine outputs of multiple systems using features of the current problem
as context. In this chapter, we use SWAF to more effectively combine several object
detection and VQA models. Our approach extracts features from the images for the
object detection problem and from image-question (IQ) pairs for the VQA problem,
as well as the component models for both tasks and provides this information to the
classifier. The meta-classifier then learns to predict whether the generated output is
correct or not. We obtain significant improvements over the component models for

61

both the 2015 object detection and the 2016 VQA competitions.

5.2 Prior Work

Prior work related to stacking and ensembling in general was discussed in
the previous chapter. In this chapter, we focus on work related to object detection
and visual question answering (VQA).
ImageNet Object detection: The scale of the ImageNet dataset is so large that
almost all participating teams deploy deep learning for object detection. The top-
performing team in the 2015 iteration of the competition used a deep residual net
(He et al., 2016) and several other teams deployed a version of faster R-CNN (Re-
gion based Convolutional Neural Network) with selective search (Ren et al., 2015).
Faster R-CNN is a more efficient variant of fast R-CNN (Girshick, 2015) that first
uses Region Proposal Networks (RPN) to train an end-to-end network for gener-
ating region proposals. The region proposals are then used by the R-CNN for de-
tection. In our work, we also use the deformable parts model based on histogram
of oriented gradients (HOG) (Dalal and Triggs, 2005), as a component model for
object detection. There has been some work on stacking for multi-layer object
recognition (Peppoloni et al., 2014) but our work is the first to use stacking for
ensembling object detectors and we obtain significant improvements over the com-
ponent systems.
Visual question answering: A variety of methods to address the VQA challenges
of image understanding, language grounding and common-sense knowledge capa-
bilities have been developed in recent years (Andreas et al., 2016a; Fukui et al.,
2016; Xu and Saenko, 2016; Lu et al., 2016; Chen et al., 2015). The vision com-
ponent of a typical VQA system extracts visual features using a deep convolutional
neural network (CNN), and the linguistic component encodes the question into a
semantic vector using a recurrent neural network (RNN). An answer is then gener-
ated conditioned on the visual features and the question vector. The top-performing
VQA systems are ensembles of neural networks that perform significantly better
than any of the underlying individual models.

62

Figure 5.1: ImageNet Object detection sample images with bounding boxes around
object categories.

5.3 Stacking with Auxiliary Features for Object Detection

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a
widely known annual competition in Computer Vision and has become the stan-
dard benchmark for large-scale object recognition (Russakovsky et al., 2015). The
goal of the ImageNet object detection task is to detect all instances of object cate-
gories (out of the 200 predefined categories) present in the image and localize them
by providing coordinates of the axis-aligned bounding boxes for each instance. The
output for the task is the image ID, the object category (1-200), a confidence score,
and the coordinates of the bounding box. In case of multiple instances in the same
image, each instance is mentioned on a separate line. Figure 5.1 shows a random
sample of images with bounding boxes indicating the location and scale of the de-
tected objects.

63

5.3.1 Auxiliary features for object detection

We use two types of auxiliary features for the object detection task – the
provenance and the instance auxiliary features.

Provenance features

Recollect that the intuition behind using provenance information in auxil-
iary features is that an output is more reliable if multiple systems agree not only
on the decision itself, but also on its provenance. For the provenance feature, we
used the Jaccard coefficient to measure the overlap between bounding boxes across
systems. If a system successfully detects a target category then it must provide a
bounding box localizing the object in the image. The bounding box is in the form
〈xmin, ymin, xmax, ymax〉 and is similar to provenance for the KBP tasks as discussed
in the previous chapter, giving where in the input is the information supporting the
conclusion. For a given image ID, if N systems detect the same object instance,
then the bounding box overlap (BBO) score for a system n is calculated as the
intersection of the areas of bounding boxes, divided by their union:

BBO(n) =
1

|N| − 1
×

∑
i∈N,i6=n

|Area(i) ∩ Area(n)|
|Area(i) ∪ Area(n)|

(5.1)

Figure 5.2 shows a cartoon example of how the provenance feature is calculated
based on an object instance in an image. We note that the use of provenance as
features does not require access to the large corpus of images and is thus computa-
tionally inexpensive.

Instance features

The idea behind using the instance auxiliary features is that some models
learn to better localize object categories with certain attributes (e.g.: furry objects)
than other systems. For example, a classifier could learn not to trust an object detec-
tion output for the target class ‘dog’ from a system that is not good at detecting dogs.
The instance features enable the stacker to learn such patterns using task-specific

64

Figure 5.2: The provenance feature for a system is calculated as the intersection
(red area) over union (red plus blue areas) of the area of its bounding box with
every other system’s bounding box for an object instance.

information in conjunction with the provenance features. We used two types of in-
stance features. First, we used a one-hot encoding of the object category (total 200)
as instance features. Second, we used a bag of visual words for the image using
Scale-Invariant Feature Transform (SIFT) as the feature descriptor (Lowe, 2004) as
well as the 4, 096 features from VGGNet’s fc7 layer (Simonyan and Zisserman).
Note that some underlying object detection systems also used these features for
classification and we show that using them for learning the top-level meta-classifier
further boosts the performance.

Instance formation

We used the image ID as a handle for ensembling object instances in an
image from multiple systems. The component systems each could possibly detect
multiple instances of an object category and it is important to discriminate between
each of the instances in order to have a coherent output. Towards this end, we de-
fined what constituted the same instance of an object across multiple system’ out-
puts as follows. For a given image, two systems are said to have detected the same
object instance if the intersection over union (IOU) of the areas of their bounding
boxes (BB) is greater than 0.5. If the outputs don’t meet this criteria for a given im-
age, then they are considered to be two different instances of the same object in that
image. The choice for the IOU of the BB to be greater than 0.5 to be considered the

65

same instance is based on the evaluation metric of the object detection competition,
i.e., a system is said to have detected an object instance correctly if the IOU of it’s
BB with the ground truth exceeds a threshold of 0.5.

The confidence scores along with the provenance and instance auxiliary fea-
tures of every component system form the input to the stacker. Each object instance
that is classified as correct by the stacker is included in the final output. The bound-
ing box of the ensemble is calculated as follows. If multiple systems detected the
object instance, then we sum the overlapping areas between a system’s bounding
box and that of every other system that also detected the exact same instance and
we do this for every such system. The system with the maximum sum has a bound-
ing box with the maximum overlap with other systems, and thus is used as the
bounding box for the ensemble. When there are only two systems that produced
an output, this method does not discriminate so we use the bounding box produced
by the system with the higher confidence score. The reason we did not average
the bounding boxes of the component system to produce the bounding box of the
ensemble is that if a component system’s bounding box does not overlap with the
other systems’ bounding boxes, averaging mostly results in a bounding box which
does not localize the object instance correctly. We also experimented with using
the union, intersection, and average of the bounding boxes across systems as the
aggregate bounding box for the ensemble, but this approach is heavily penalized
by the ImageNet evaluation metric. The union and the intersection mainly failed
because they localized too much or too little of the object instance and did not meet
the IOU threshold of 0.5 during evaluation as discussed above. The average mostly
failed when one of the system’s bounding box had little overlap with the bounding
boxes of all the other system’s and this led to the average bounding box being off-
set as well and therefore not meeting the evaluation threshold. A weighted average
approach to combining bounding boxes would be an interesting future direction to
explore.

66

5.3.2 Component object detection models

Our object detection ensemble using stacking with auxiliary features (SWAF)
is comprised of three individual component models. We used two state-of-the-art
deep neural models trained on the ImageNet object-detection training set, the ZF
and the VGG models (Ren et al., 2015). We also use the Deformable Parts Model
(DPM) (Felzenszwalb et al., 2010) with selective search for object detection, to
produce a final ensemble of three systems. We ran these models on the validation
set using the faster-RCNN method (Ren et al., 2015) with selective search (Uijlings
et al., 2013) using the Caffe system (Jia et al., 2014). DPM is very slow to test
and was unable to process the entire test set on all 200 categories. Therefore, we
performed 10-fold cross-validation on the validation set, testing our approach on a
total of about 20K images. We have discussed each of these three models in detail
below.

The ZFNet model

The Zeiler and Fergus (ZF) (Zeiler and Fergus, 2014) is a well known convo-
lutional neural network model in computer vision. It is an improvement on AlexNet
obtained by tuning the architecture hyperparameters, in particular, the ZFNet uses
filters of size 7 × 7 in the first layer instead of the 11 × 11 sized filters of the
AlexNet. A smaller filter size in the first convolutional layer helps retain a lot of
original pixel information. The ZFNet has 5 convolutional layers followed by three
fully connected layers.

The VGGNet

The VGGNet (Simonyan and Zisserman) is a 16 layer convolutional neural
network that uses a 3× 3 filter size. It has 13 convolutional layers and the last three
fully connected layers. The VGGNet was very influential because it emphasized
that CNNs should have a deep network of layers for hierarchical representation of
visual data, such as images, to actually work.

Both the ZF and VGGNet networks are used for object detection in a similar

67

way by first generating region proposals using a region proposal network (RPN)
(Ren et al., 2015) which are then used by a region-based convolutional neural net-
work (R-CNN) (Girshick, 2015) for detection. The RPN is a fully connected convo-
lutional network that simultaneously predicts object bounds and objectness scores
at each position in an image. The RPN is trained end-to-end to generate high-
quality region proposals which are used by the R-CNN. The RPN and the R-CNN
are merged into a single network by sharing their convolutional features using at-

tention which is a way for the RPN component to tell the unified network where to
look. We use a faster version of R-CNN called the Faster R-CNN (Ren et al., 2015)
for more efficient object detection.

Deformable Parts Model (DPM)

The DPM is a type of Markov random field that models an object as a col-
lection of spatially constrained parts (Felzenszwalb et al., 2010). An object detector
based on DPM will first find a match for the whole object and then model the parts to
fine-tune the result. A DPM based object detector uses a sliding window approach,
where a filter is applied at all positions and scales of an image. The detector is
like a classifier which takes as input an image, a position within that image, and a
scale and determines whether or not there is an instance of the target category at the
given position and scale. The object detector uses low-level features based on the
histogram of oriented gradients (HOG) to represent an object category.

The DPM was a “non-deep” and more traditional and computationally slow
model used in our ensemble. Although more recently Girshick et al. (2015) showed
that a DPM could be formulated as a CNN. The authors unrolled the DPM inference
algorithm and mapped each step to an equivalent CNN layer. We, however, use the
traditional DPM that is a graphical model and not a neural network. The reasoning
is that the errors between the DPM and the CNN networks are de-correlated and we
hypothesized that our meta-classifier could exploit this information to significantly
outperform even while using a “non-deep” object detector.

68

5.3.3 Experimental Results

In this section, we present experimental results on using SWAF for object
detection and compare our results to other individual as well as ensemble systems.
We used an SVM with an RBF kernel as a meta-classifier. A small random sample
of the training set (10%) was used as validation data to set the hyper-parameters.
The ImageNet challenge evaluates the object detection task using average preci-
sion (AP) on a precision-recall curve. The predicted bounding box for detection
is considered correct if its intersection over union with the ground truth exceeds a
threshold of 0.5 (Russakovsky et al., 2015). The official scorer gives the AP for
each of the 200 classes along with the median and mean AP. We report the median
AP and mean AP (mAP). We compare our results to stacking without using any
auxiliary features and various ablations of the provenance and instance auxiliary
features. We were unable to obtain the state-of-the-art system and thus it was not
part of our ensemble. For this reason, we compare our results to the best performing
component system. Our results also include the “oracle” voting baseline for ensem-
bling the system outputs. For this approach, we vary the threshold on the number of
systems that must agree to identify an “oracle” threshold that results in the highest
F1 score by plotting a precision-recall curve and finding the best F1. An optimal
threshold of 1 gave the best voting performance on the detection task. We note that
oracle voting is “cheating” to give the best possible voting baseline. We also com-
pare to the Mixture of Experts (ME) (Jacobs et al., 1991) ensemble system that was
discussed in detail in the previous chapter. Recollect that the reason we compare
to the ME ensembling approach is because of its similarity to the instance features
for our SWAF approach, i.e., some models are better at certain instance types than
other models.

Table 5.1 shows the results for the ImageNet 2015 object detection task.
Using stacking with both types of auxiliary features beats the best individual com-
ponent system as well as the oracle voting baseline significantly. For the voting
baseline, we consider an object instance to be the same if the systems’ bounding
boxes have IOU greater than 0.5. If we were able to use the top-ranked system

69

Method Mean AP Median AP

Oracle Voting baseline (1 or more systems must agree) 0.366 0.368
Best component system (VGG + selective search) 0.434 0.430
Stacking without auxiliary features 0.451 0.441
Stacking with just instance features 0.461 0.450
Mixtures of experts (ME) model 0.494 0.489
Stacking with just provenance auxiliary features 0.502 0.494
Stacking with provenance + instance auxiliary features 0.506 0.497

Table 5.1: Results on 2015 ImageNet object detection task using the official Ima-
geNet scorer.

Figure 5.3: Random sample of outputs obtained on the 2015 ImageNet object de-
tection task. The green bounding boxes are generated by the individual systems and
among those, SWAF is able to identify the bounding boxes that are actually correct
indicated by red.

from the competition as part of our ensemble, we would expect to obtain a new
state-of-the-art result. Since we use cross-validation for obtaining these results, we

70

performed a pairwise t-test with significance level 0.05 and found that using any ab-
lation of stacking with auxiliary features is significantly better (p-value< 0.05) than
using the best component system, although using stacking alone is not significantly
worse compared to stacking with any auxiliary features. The ME algorithm per-
forms significantly better than the individual components since it works well given
the small number of component systems (i.e. 3). On analyzing the results, we found
that the AP of several object classes differed widely across systems and even more
so between the deep systems and DPM. Using SWAF, the meta-classifier learns to
discriminate systems based on the auxiliary features and is thus able to leverage the
best aspects of each individual system. An analysis of the results showed that SWAF
particularly does well on localizing objects in images that have multiple instances
of the same object, i.e. the image could be considered to be “cluttered”. Combin-
ing diverse systems intelligently is one of the reasons why SWAF does particularly
well on images with multiple instances of the same object category. Figure 5.3
demonstrates SWAF on a sample of the ImageNet object detection dataset.

5.4 Stacking with Auxiliary Features for VQA

VQA is the task of answering a natural language question about the content
of an image by returning an appropriate word or phrase. Figure 5.4 shows a sample
of images and questions from the VQA 2016 challenge. The dataset consists of
images taken from the MS COCO dataset (Lin et al., 2014) with three questions
and answers per image obtained through Mechanical Turk (Antol et al., 2015). Ta-
ble 5.2 summarizes the splits in the VQA dataset. Several deep learning models
have been developed that combine a computer vision component with a linguistic
component in order to solve the VQA challenge. Some of these models also use
data-augmentation for pre-training. To the best of our knowledge, there has been
no prior work on stacking for VQA, and we are the first to show how model-specific
explanations can serve as an auxiliary feature. The auxiliary features that we use
are motivated by an analysis of the VQA dataset and also inspired by other related
work such as using a Bayesian framework to predict the form of the answer from

71

Figure 5.4: Random sample of images with questions and ground truth answers
taken from the VQA dataset.

the question (Kafle and Kanan, 2016).
For stacking VQA systems, we first form unique question-answer pairs across

all of the systems’ outputs before passing them through the stacker. If a system gen-
erates a given output, then we use its probability estimate for that output, otherwise,
the confidence is considered zero. If a question-answer pair is classified as correct
by the stacker, then if there are other answers that are also classified as correct for
the same question, the output with the highest meta-classifier confidence is chosen.
For questions that do not have any answer classified as correct by the stacker, we
choose the answer with lowest classifier confidence, which means it is least likely to
be incorrect. This is because the VQA evaluation requires that participating systems
submit “some” answer to every question in the test set.

The confidence scores along with other auxiliary features form the com-
plete set of features used by the stacker. The auxiliary features are the backbone of
the SWAF approach, enabling the stacker to intelligently learn to rely on systems’
outputs conditioned on the supporting evidence. We use a total of four different cat-

72

Images Questions

Training 82,783 248,349
Validation 40,504 121,512

Test 81,434 244,302

Table 5.2: VQA dataset splits.

egories of auxiliary features for VQA. Three of these can be inferred directly from
the image-question (IQ) pair and do not require querying the individual models.
For the fourth category of auxiliary features, we generate visual explanations for
the component models and use these to develop auxiliary features. The auxiliary
features used in our VQA ensemble model are discussed below.

5.4.1 Auxiliary Features for VQA

This section discusses the auxiliary features inferred from the IQ pairs and
the next section focuses on using explanation as auxiliary features.

Question and Answer Types

Antol et al. (2015) analyzed the VQA data and found that most questions fall
into several types based on the first few words (e.g., questions beginning with “What
is...”, “Is there...”, “How many...”, or “Does the...”). Using the validation data, we
discover such lexical patterns to define a set of question types. The questions were
tokenized and a question type was formed by adding one token at a time, up to a
maximum of five, to the current substring. The question “What is the color of the
vase?” has the following types: “What”, “What is”, “What is the”, “What is the
color”, “What is the color of”. The prefixes that contain at least 500 questions were
then retained as types. We added a final type “other” for questions that do not fall
into any of the predefined types, resulting in a total of 70 question types. A 70-bit
vector is used to encode the question type as a set of auxiliary features.

The original analysis of VQA answers found that they are 38% “yes/no”
type and 12% numbers. There is clearly a pattern in the VQA answers as well,

73

and we use the questions to infer some of these patterns. We considered three
answer types – “yes/no,” “number,” and “other”. The answer-type auxiliary fea-
tures are encoded using a one-hot vector. We classify all questions beginning
with “Does”,“Is”,“Was”,“Are”, and “Has” as “yes/no”. Ones beginning with “How
many”, “What time”, “What number” are assigned “number” type. These inferred
answer types are not exhaustive but have good coverage. The intuition behind using
the question and answer types as auxiliary features is that some VQA models may
be better than others at predicting certain types of questions and/or answers. Mak-
ing this information available at the time of classification aids the stacker in making
a better decision.

Question Features

We also use a bag-of-words (BOW) representation of the question as auxil-
iary features. Words that occur at least five times in the validation set were included.
The final sparse vector representing a question was normalized by the number of
unique words in the question. In this way, we are able to embed the question into
a single vector. Goyal et al. (2016) showed that attending to specific words in the
question is important in VQA. Including a BOW of the words in the question as
auxiliary feature equips the stacker to efficiently learn which words are important
and can aid in classifying answers.

Image Features

We also used “deep visual features” of the image as additional auxiliary
features. Specifically, we use the 4, 096 features from VGGNet’s (Simonyan and
Zisserman) fc7 layer . This creates an embedding of the image in a single vector
which is then used by the stacker. Using such image features enables the stacker to
learn to rely on systems that are good at identifying answers for particular types of
images. The individual VQA models fuse an embedding of the image along with an
embedding of the question. By using the image embeddings at the meta-classifier
level, the stacker learns to discriminate between the component models based on a

74

deeper representation of the images.

5.4.2 Using Explanations

Recently, there has been some work on analyzing regions of the image that
deep learning models focus on while making decisions (Goyal et al., 2016; Hen-
dricks et al., 2016; Park et al., 2016). Their work shows that deep learning models
attend to relevant parts of the image while making a decision. For VQA, the parts
of images that the models focus on can be thought of as visual explanations for
answering the question. We use these visual explanations to construct auxiliary
features for SWAF. The idea behind using explanation as features is that it enables
the stacker to learn to trust the agreement between systems when they also agree
on the heat-map explanation by “looking” at the right region of the image when
generating an answer.

Generating Explanations

We used the GradCAM algorithm (Selvaraju et al., 2017) to generate model-
specific explanatory heat-maps for each IQ pair. The GradCAM approach generates
a class-discriminative localization-map for a given model based on its respective
predicted output class in the following way. First, the gradient of the score yc

for the predicted class c is computed before the softmax layer with respect to the
feature maps Ak of a convolutional layer. Then, the gradients flowing back are
global average pooled to obtain the neuron importance weights.

wc
k =

global average pooling︷ ︸︸ ︷
1

Z

∑
i

∑
j

∂yc

∂Ak
ij︸ ︷︷ ︸

backprop gradients

(5.2)

The above weights capture the importance of a convolutional feature map k for the
output class c. Z is the total number of pixels in the feature map. A ReLU over the
weighted combination of the feature maps results in the required localization-map

75

Figure 5.5: Given an image and a target class (e.g.“Tiger Cat”), GradCAM gen-
erates a visual explanation by backpropagating the gradients for that class to the
convolutional feature maps of interest. The visual explanation represents where the
model “looks” while making a particular decision.

for the output class as follows:

Hc = ReLU(
∑
k

wc
kA

k) (5.3)

The heat-map Hc is of the same size as the convolutional feature maps of the net-
work. The ReLU applied to the linear combination of maps results in features that
have a positive influence on the output class, that is, the pixels whose intensity
should be increased in order to increase yc. Hc is up-sampled to the input image
resolution using bi-linear interpolation. Figure 5.5 shows the end-to-end process of
generating a visual explanation for a CNN.

For each of the component VQA models, we generate the localization-map
to be used as auxiliary features for ensembling. The intuition behind using expla-
nation as auxiliary features is that the agreement between systems is perhaps more
trustworthy when they also agree on the heat-map explanation. Figure 5.6 shows a
sample of IQ pairs from the VQA dataset and their respective heat-maps generated
by three different VQA models discussed in Section 5.4.3. We propose algorithms

76

Figure 5.6: Each row from left to right shows an image-question pair from the VQA
dataset along with localization-maps overlaid on the image generated by the LSTM,
HieCoAtt and MCB models respectively. The answers shown are those predicted
by our ensemble.

77

Figure 5.7: The MCB and HieCoAtt models generate the correct answer and have
localization-maps that support their answer (i.e, “tennis”) while the LSTM model
focuses on the player’s foot and ground area and produces an incorrect answer (i.e.,
“baseball”).

for generating and evaluating visual explanations for ensembles in the next chapter.

Explanation as Auxiliary Features

The localization-map generated by each VQA model serves as a visual ex-
planation for the predicted output of that model. We compare agreement between
the localization-maps of the individual models to generate auxiliary features for
SWAF. Figure 5.7 demonstrates that models that agree on an answer tend to have
overlapping localization-maps. Figure 5.8 and Figure 5.9 show examples from
VQA data where models with overlapping localization-maps produce the correct
answer and those with barely any overlap between their localization-maps pro-
duce an incorrect answer. These examples indicate that systems with overlapping
localization-maps produce outputs that are more reliable.

We use the rank-order correlation metric to measure the overlap between
localization-maps. First, we take the absolute gray-scale value of the localization-
maps in of each model and compute their mean rank-correlation with the localization-
map of every other model. Then, we rank the pixels according to their spatial atten-

78

Figure 5.8: Example of an image-question pair where all three component models
have overlapping localization-maps and produce the correct answer (i.e., “skate-
boarding”).

Figure 5.9: Example of an image-question pair where all three component models
have barely any overlap between their localization-maps and produce the incorrect
answer (i.e., “yes”).

79

tion and then compute the correlation between the two ranked lists. The rank corre-
lation protocol has been used in the past to compare machine-generated and human
attention-maps as described in (Das et al., 2016). We compare the localization-
maps of the component VQA models pairwise and this generates

(
n
2

)
“explanation

agreement” features for SWAF, where n is the total number of models.

5.4.3 Component VQA models

We use SWAF to combine three diverse VQA systems such that the final
ensemble performs better than any individual component model even on questions
with a low agreement. All three component models are trained on just the VQA
training set.

Long Short-Term Memory (LSTM)

The LSTM model (Antol et al., 2015) is one of the original baseline models
used to establish a benchmark for the VQA dataset. A VGGNet (Simonyan and
Zisserman) is used to obtain embeddings for the image which are combined with
an LSTM (Hochreiter and Schmidhuber, 1997) embedding of each question. An
LSTM with two hidden layers is used to obtain a 2, 048-dimensional embedding
of the question, followed by a fully-connected layer with tanh non-linearity to
transform the embedding to 1, 024 dimensions. The l2 normalized activations from
the last hidden layer of VGGNet are used as a 4, 096 dimensional image embedding.
The image embedding is first transformed to 1, 024 dimensions by a fully-connected
layer with tanh nonlinearity to match the dimensionality of the LSTM embedding
of the question. The transformed image and LSTM embeddings are then fused via
element-wise multiplication.

Hierarchical Question-Image Co-Attention (HieCoAtt)

The idea behind the HieCoAtt model is that in addition to using visual at-
tention to focus on where to look, it is equally important to model what words to
attend to in the question (question-attention) (Lu et al., 2016). This model jointly

80

reasons about the visual and language components using “co-attention”. Question
attention is modeled using a hierarchical architecture at word, phrase, and question
levels.

HieCoAtt uses two types of co-attention – parallel and alternating. Parallel
co-attention attends to the image and question simultaneously by calculating the
similarity between image and question features at all pairs of image-locations and
question-locations. Alternating co-attention sequentially alternates between gener-
ating image and question attention by attending to the image based on the question
summary vector and then attending to the question based on the attended image fea-
tures. Both co-attentions are executed at all three levels of the question hierarchy.

Multimodal Compact Bilinear pooling (MCB)

The MCB model combines the vision and language vector representations
using an outer product instead of the traditional approach of using concatenation
or element-wise product or sum of the two vectors (Fukui et al., 2016). Bilinear
pooling computes the outer product between two vectors which, in contrast to the
element-wise product, allows a multiplicative interaction between all elements of
both vectors. To overcome the challenge of high dimensionality due to the outer
product, the authors adopt the idea of using Multimodal Compact Bilinear pool-
ing (MCB) (Gao et al., 2016) to efficiently and expressively combine multimodal
features.

The MCB model extracts representations for the image using the 152-layer
Residual Network (He et al., 2016) and an LSTM (Hochreiter and Schmidhuber,
1997) embedding of the question. The two vectors are pooled using MCB and the
answer is obtained by treating the problem as a multi-class classification problem
with 3, 000 possible classes. The MCB model won the VQA 2016 challenge by
obtaining the best performance on the test set.

81

5.4.4 Experimental Results

We now present experimental results on the VQA challenge using the SWAF
approach and compare it to various baselines, individual and ensemble VQA mod-
els, as well as ablations of our SWAF algorithm on the open-ended VQA test set. In
addition to the three data splits given in Table 5.2, the VQA challenge divides the
test set into test-dev and test-standard. Evaluation on either split requires submitting
the output to the competition’s online server.1 However, there are fewer restrictions
on the number of submissions that can be made to the test-dev compared to the test-

standard. The test-dev is a subset of the standard test set consisting of randomly
selected 60, 864 (25%) questions. We use the test-dev set to tune the parameters of
the meta-classifier. All the individual VQA models that we ensemble are trained
only on the VQA training set and the SWAF meta-classifier is trained on the VQA
validation set.

For the meta-classifier, we used a L1-regularized SVM classifier for generic
stacking and stacking with only question/answer types as auxiliary features. For
the question, image, and explanation features, we found that a neural network with
two hidden layers works best. The first hidden layer is fully connected and the
second has approximately half the number of neurons as the first layer. The question
and image features are high-dimensional and therefore a neural network classifier
worked well. We found that using late fusion (Karpathy et al., 2014) to combine the
auxiliary features for the neural network classifier worked slightly better. We used
Keras with Tensorflow back-end (Chollet, 2015) for implementing the network.
We compare our approach to a voting baseline which maximizes precision by only
accepting an answer as correct if all the component systems predicted the exact
same answer for a given question. For questions that do not have a consensus, the
answer that has the maximum agreement is taken with ties being broken in the favor
of systems with higher confidence scores. We also compare against other state-of-
the-art VQA systems not used in our ensemble: iBowIMG (Zhou et al., 2015b),
DPPNet (Noh et al., 2016) and the Neural Module Networks (NMNs) (Andreas et

1www.visualqa.org/challenge.html

82

www.visualqa.org/challenge.html

Method All Yes/No Number Other

DPPNet (Noh et al., 2016) 57.36 80.28 36.92 42.24

iBOWIMG (Zhou et al., 2015b) 55.72 76.55 35.03 42.62
NMNs (Andreas et al., 2016b) 58.70 81.20 37.70 44.00
LSTM (Antol et al., 2015) 58.20 80.60 36.50 43.70
HieCoAtt (Lu et al., 2016) 61.80 79.70 38.70 51.70
MCB (Single system) (Fukui et al., 2016) 62.56 80.68 35.59 52.93

MCB (Ensemble) (Fukui et al., 2016) 66.50 83.20 39.50 58.00

Voting (MCB + HieCoAtt + LSTM) 60.31 80.22 34.92 48.83
Stacking 63.12 81.61 36.07 53.77

+ Q/A type features 65.25 82.01 36.50 57.15
+ Question features 65.50 82.26 38.21 57.35

+ Image features 65.54 82.28 38.63 57.32
+ Explanation features 67.26 82.62 39.50 58.34

Table 5.3: Accuracy results on the VQA test-standard set. The first block shows
performance of a VQA model that use external data for pre-training, the second
block shows single system VQA models, the third block shows an ensemble VQA
model that also uses external data for pre-training, and the fourth block shows en-
semble VQA models.

al., 2016b).
The iBowIMG concatenates the image features with the bag-of-word ques-

tion embedding and feeds them into a softmax classifier to predict the answer, re-
sulting in performance comparable to other models that use deep or recursive neural
networks. The iBowIMG beats most VQA models considered in their paper. The
DPPNet, on the other hand, learns a CNN with some parameters predicted from a
separate parameter prediction network. Their parameter prediction network uses a
Gated Recurrent Unit (GRU) to generate a question representation and maps the
predicted weights to a CNN via hashing. The DPPNet uses external data (data-
augmentation) in addition to the VQA dataset to pre-train the GRU. Another well-
known VQA model is the Neural Module Network (NMN) that generates a neural
network on the fly for each individual image and question. This is done by choosing

83

from various sub-modules based on the question and composing these to generate
the neural network, e.g., the find[x] module outputs an attention map for detect-
ing x. To arrange the modules, the question is first parsed into a symbolic expres-
sion and using these expressions, modules are composed into a sequence to answer
the query. The whole system is trained end-to-end through backpropagation.

The VQA evaluation server, along with reporting accuracies on the full ques-
tion set, also reports a break-down of accuracy based on three answer categories.
The image-question (IQ) pairs that have answer type as “yes/no”, those that have
“number” as their answer type and finally those that do not belong to either of the
first two categories are classified as “other”. Table 5.3 shows the full and category-
wise accuracies. All scores for the stacking models were obtained using the VQA
test-standard server. The table shows results for both single system and ensemble
MCB models. We used the single system MCB model as a component in our en-
semble. The ensemble MCB system, however, was the top-ranked system in the
VQA 2016 challenge and it is pre-trained on the Visual Genome dataset (Krishna et
al., 2017) using pre-trained GloVe vectors (Pennington et al., 2014). On the other
hand, our ensemble system does not use any external data and comprises of only
three component models.

The SWAF approach obtained a new state-of-the-art result on the VQA task.
The vanilla stacking approach itself beats the best individual model and adding the
auxiliary features further boosts the performance. Our SWAF model with all four
sets of auxiliary features related to IQ pairs did particularly well on the more diffi-
cult “other” answer category, indicating that the auxiliary features provide crucial
information at classification time. Combining diverse systems with de-correlated
errors intelligently is one of the reasons why SWAF shines on the “other” answer
category. To further analyze the results using SWAF, we performed experiments
with ablations of the auxiliary features. Figure 5.10 shows the results on the test-

dev set obtained when ablating each of the auxiliary feature sets. We observed that
deleting the Q/A type decreased performance the most and deleting the explanation
features decreased performance the least.

The voting baseline does not perform very well even though it is able to

84

Figure 5.10: Results for auxiliary features ablations on the VQA test-dev set. The
x-axis indicates the feature that was ablated from the final ensemble. Dotted line
shows the performance of SWAF without any ablations.

beat one of the component models. The SWAF ablation results clearly indicate that
there is an advantage in using each of the auxiliary features. How useful each of
these auxiliary features is varies based on the IQ pair and answer types. Each of the
auxiliary features contributed towards the final ensemble’s performance, which is
clear from Table 5.3. The voting and the “vanilla stacking” ensembling approaches
did not perform as well as the auxiliary features. This led us to conclude that the
performance gain is actually obtained from using these auxiliary features. The re-
sults reported for the MCB approach is an ensemble of seven MCB models with
attention, as described in (Fukui et al., 2016).

Using explanations generated by various deep learning models as an auxil-
iary feature gave us insights into their decision-making process. We observed that
the localization-maps generated were fairly noisy and these maps are still not good
enough to develop human trust in those systems which is evident from Figure 5.6.
Although the individual component systems agreed on an answer for many of the
IQ pairs, the regions of an image they attend to varied significantly. However, the
rank correlation metric made the localization-maps comparable and further using
those as auxiliary features alleviated the noise. This is because the stacker learns

a weighing of the auxiliary features including those obtained by using explanation
maps when we train on the validation set. In this way, it learns to trust only the

85

localization-maps that are actually useful. We also observed that there was a high
positive correlation between the explanation maps generated by the HieCoAtt and
MCB models, followed by the LSTM and MCB models and then the LSTM and
HieCoAtt models with several of the maps even negatively correlated. We also ex-
perimented with using the Earth Mover’s Distance (EMD) for comparing heat-maps
and found that it worked better than the rank-order correlation, however, it came at
a cost of high computational complexity (O(n3) vs. O(n)). Figure 5.10 shows the
difference in performance obtained when the explanation feature calculated using
the EMD metric and the rank-order correlation metric is ablated from the final en-
semble. Clearly, using EMD for comparing explanation maps is better and shows
improvement in performance. As shown in the past, our findings also confirmed
that EMD metric provides a finer-grained comparison between the attention maps
(Bylinskii et al., 2018). Our work shows that explanation generated by deep learn-
ing models does not have to be restricted to developing human trust or making these
models more transparent but explanation can also be used effectively for improving
performance on a challenging task.

5.5 Chapter Summary

We have presented results for using stacking with auxiliary features (SWAF)
on two challenging vision problems – object detection and VQA. SWAF obtained
very promising results on both tasks, significantly outperforming the best compo-
nent systems as well as other ensembling methods. Using SWAF, we obtained an
overall mAP of 50.6% on the ImageNet object detection problem and an overall
accuracy of 67.26% on the VQA problem. On analyzing the results obtained by
SWAF, we found that it does better when the component outputs differ widely and
have low confidences. The gain in performance from SWAF comes from output de-
cisions that are difficult to make without context; however, using auxiliary features
enabled fusion of additional relevant information, allowing the stacker to make the
right decision.

We proposed two and four different categories of auxiliary features for the

86

object detection and VQA problems respectively. For the VQA task, we proposed
and evaluated the novel idea of using explanations to improve ensembling of mul-
tiple systems. We demonstrated how visual explanations for VQA (represented as
localization-maps) can be used to aid stacking with auxiliary features. This ap-
proach effectively utilized information on the degree to which systems agree on the
explanation of their answers. We showed that the combination of all of these cate-
gories of auxiliary features, including explanation, gives the best results. Our work
demonstrated that explanations along with developing human trust can also be used
for improving performance on a challenging problem.

87

Chapter 6

Ensembling and Evaluating Explanations

This chapter discusses techniques for generating visual explanations for en-
semble models and shows two ways to evaluate explanation that does not depend
on human annotated ground truth. The work in this chapter has been published
in (Rajani and Mooney, 2017a), and all work in this chapter constitutes original
contributions.

6.1 Chapter Overview

Many machine learning systems deployed for real-world applications such
as recommender systems, image captioning, object detection, etc. are ensembles
of multiple models. Also, the top-ranked systems in many data-mining and com-
puter vision competitions use ensembles. Although ensembles are popular, they are
opaque and hard to interpret, and there has been little work on generating explana-
tions for ensembles. In this chapter, we propose two novel methods for ensembling
visual explanations – the weighted average (WA) and the penalized weighted av-
erage (PWA). We demonstrate the success of these approaches on Visual Question
Answering (VQA) by using the localization maps for the component systems. Our
novel approach is scalable with the number of component models in the ensemble.

We also introduce two new approaches to evaluate explanations – the com-
parison metric and the uncovering metric. Our crowd-sourced human evaluation
indicates that our ensemble visual explanation significantly qualitatively outper-
forms each of the individual system’s visual explanation. We consider the same
three VQA systems in this chapter as in the previous chapter – the LSTM (Antol et
al., 2015), the HieCoAtt (Lu et al., 2016) and the MCB (Fukui et al., 2016).

88

6.2 Prior Work

Prior work related to Visual Question Answering (VQA) has been discussed
in the previous chapter. In this chapter, we discuss prior work related to generating
and evaluating explanations and focus primarily on visual explanations.

Deep learning models have been used widely on several vision and language
problems. However, they are opaque and unable to explain their decisions (Sel-
varaju et al., 2017). There are several advantages of having AI systems that can
generate explanations that support their predictions, both when AI systems perform
better and worse than humans (Johns et al., 2015; Agrawal et al., 2016). These
advantages have motivated recent work on explainable AI systems, particularly in
computer vision (Antol et al., 2015; Goyal et al., 2016; Hendricks et al., 2016; Park
et al., 2016). However, there has been no prior work on generating visual explana-
tions for ensemble systems.

Evaluating explanations generated by AI models is another challenging prob-
lem and crucial for measuring the quality of explainable AI systems. Most of the
prior work in this area relies on annotated ground truth explanations (Park et al.,
2016; Goyal et al., 2016; Das et al., 2017a). Hendricks et al. (2016) used human
experts on bird watching to evaluate explanations for fine-grained bird classification
and asked them to rank the image-explanation pairs. On the other hand, Das et al.
(2017a) collect human attention maps for VQA by instructing human subjects on
Mechanical Turk (MTurk) to sharpen parts of a blurred image that are important for
answering the questions accurately. Selvaraju et al. (2017) evaluated explanations
for image captioning by instructing human subjects on MTurk to select if a machine
generated explanation is reasonable or not based on the predicted output.

6.3 Ensembling Visual Explanation

Our goal is to generate visual explanations for an ensemble model of VQA.
We do this by ensembling explanations of the component models and using heuris-
tics to constrain the ensemble explanation such that it is faithful to and supports the

89

ensemble’s prediction. Our strategy depends on the individual component models’
answer and visualization for a given Image-Question (IQ) pair. We first build an
ensemble model that uses the approach discussed in the previous chapter, Stacking
With Auxiliary Features (SWAF) (Rajani and Mooney, 2017b) to combine outputs
of the three component systems. We then generate an explanation for the ensemble
by combining the visual explanations of the component systems.

We first generate model-specific explanation maps for each IQ pair using the
Grad-CAM approach discussed in the previous chapter. These explanation maps
have high and low-intensity regions depending on the parts of the image the model
is attending to while deciding for the IQ pair under consideration. We generate such
explanation-maps for each of the component VQA models used in the ensemble.
Thereafter, we ensemble these explanation-maps of individual models to create an
explanation for the ensemble. We now discuss two of our approaches for generating
an ensembled visual-explanation that reflects the behavior of the ensemble – the
weighted average (WA) and penalized weighted average (PWA).

6.3.1 Weighted Average Ensemble Explanation

As the name suggests, the ensemble explanation is generated by averag-
ing the explanations of the component models proportional to their weights. The
Weighted Average (WA) ensemble explanation is calculated as follows:

Ei,j =

 1
|K|
∑

k∈K wkA
k
i,j, if wkA

k
i,j ≥ t

0, otherwise

subject to
∑
k∈K

wk = 1

(6.1)

Here, E is the explanation map of the ensemble, i and j are used to index into the
explanation map entries, K is the set of component systems, wk and Ak are the
weights and explanation maps respectively for each of the component systems, and
t is a thresholding value.

90

Figure 6.1: The Weighted Average (WA) ensemble explanation approach on an
instance of the VQA data. In this example, all three component systems as well as
the ensemble agree on the same answer (i.e., “yellow”).

Thresholding the pixel values for the maps before or after averaging worked
well for reducing noise as well as eliminating several low-intensity regions that
arose as a result of combining multiple noisy maps. A weighted combination of the
component feature maps worked better than using equal weights across all compo-
nent systems. We weight the maps of the component systems proportional to their
performance on the validation set, subject to the constraint that the weights sum to
one. Figure 6.1 demonstrates the weighted average approach on an image-question
pair.

The weighted average ensemble explanation only combines maps of indi-
vidual systems that agree with the ensemble on the answer. If some component
systems do not agree with the ensemble, this approach ignores them. However, in-
formation from the explanation maps of such disagreeing systems can be used to
adjust the ensemble explanation, as in the following approach.

6.3.2 Penalized Weighted Average Ensemble Explanation

Component VQA systems that agree with the ensemble on the answer for
an IQ pair have relevant explanation maps that reflect how the model arrived at
its prediction. On the other hand, component systems that do not agree with the
ensemble’s output answer have explanation maps that are potentially irrelevant to
the ensemble’s answer and can be discounted from the ensemble’s explanation. The

91

Figure 6.2: The top row shows the process of ensembling visual explanation for an
IQ pair when the ensemble model agrees with the MCB and HieCoAtt models (ans:
“red”) and disagrees with the LSTM model (ans: “white”). The bottom row shows
the reference IQ pair and the MCB vs ensemble visual explanation. The explanation
map is normalized to obtain the final ensemble visualization.

Penalized Weighted Average (PWA) ensemble explanation is calculated as follows:

Ei,j =


1
|K|
∑
k∈K

∑
m∈M

p︷ ︸︸ ︷
wkA

k
i,j − wmI

m
i,j, if p ≥ t

0, otherwise

subject to
∑
k∈K

wk +
∑
m∈M

wm = 1

(6.2)

Here, Im is an explanation map of a component system that does not agree
with the ensemble and M is the total number of such systems. This assumes that a
system that does not agree with the ensemble’s answer is highlighting regions of the
image that are not relevant, so we down-weight those regions in the explanation map
for the ensemble. Another variation we explored is forcing a component model that
does not agree with the ensemble to produce an explanation map for the alternate
answer picked by the ensemble. We then calculate the ensemble explanation as in

92

Figure 6.3: The Penalized Weighted Average (PWA) ensemble explanation ap-
proach on an instance of the VQA data. In this case, the LSTM and HieCoAtt
systems agree with the ensemble’s answer (i.e., “right”) while the MCB disagrees.

the previous section, where all systems agree on the output. The forced version
of WA performed consistently worse than the corresponding PWA approach. We,
therefore, do not include it in our discussion of the results in Section 6.5. The in-
depth analysis of our results in Section 6.6, however, includes the results for the
forced version of WA.

Figure 6.2 and Figure 6.3 demonstrate the process of ensembling visual ex-
planations using the PWA approach on instances from the VQA dataset. We use
crowd-sourced hyper-parameter tuning to set the threshold value for each of the
VQA systems and is discussed in detail later in this chapter in Section 6.3.4.

6.3.3 Agreement with N systems

A visual explanation ensemble can be generated for N component models
using Equations 6.1 and 6.2 and it scales with N . We consider three component
VQA systems and there are three scenarios that arise depending on whether the en-
semble model agrees with all three, any two, or only one of the component systems.
For all the scenarios, we first generate a gray-scale GradCam visualization for each
of the component systems. Thereafter, we generate the ensemble explanation using
the aforementioned approaches depending on the scenario under consideration.

We observed that our ensemble model agreed with all three systems on ap-
proximately half of the VQA test set. In this case, we use the WA approach de-
scribed in Section 6.3.1 to generate the ensemble explanation map. The MCB com-

93

ponent model (Fukui et al., 2016), which uses the 152-layer ResNet network had
the highest weight followed by the HieCoAtt (Lu et al., 2016) and the LSTM (An-
tol et al., 2015) models, that use VGGNet. For approximately one-fourth of the test
set, our ensemble model agreed with exactly two component systems. For this sce-
nario, we combine the explanation maps using both WA and PWA approaches by,
respectively, ignoring or down-weighting the system that does not agree with the
ensemble’s answer. When the ensemble model agreed with only one component
system’s output, we generated the ensemble explanation map in two ways. First,
the ensemble explanation was set equal to the explanation of the system it agrees
with, minus the explanation of the systems it does not agree with, as in Equation 6.2.
Second, we force the systems that do not agree with the ensemble to produce ex-
planation maps for the answer produced by the ensemble and then use those maps
to calculate the ensemble explanation map using Equation 6.1.

6.3.4 Crowd-sourced hyper-parameter tuning

The weighted average and the penalized weighted average methods for en-
sembling explanation maps depend on the parameter t which thresholds the pixel
values for the maps. We also use the threshold parameter for getting rid of the noise
in the explanation maps of individual systems. We use crowd-sourcing to determine
the value of t. The idea is to optimize the explanation map generation based on the
evaluation metric which as discussed above uses human judgment. Very recently,
crowd-sourcing was used to tune the hyper-parameters of a policy network for a
reinforcement learning agent (Fridman et al., 2018).

We use Mechanical Turk to search for a good value of the parameter t for
each of the individual as well as the ensemble systems. We chose 50 random in-
stances from the VQA validation set for judging the value of the threshold param-
eter. The Turkers had to select the image that highlighted the right amount of the
appropriate regions to answer the given question. They were shown images with
explanation maps thresholded in steps of 0.1, 0.15, 0.2, 0.25. The human judges
also had an option that the highlighted regions is not appropriate. We found that a
threshold of less than 0.1 or more than 0.25 generated maps that were too noisy or

94

not sufficiently highlighted respectively. The outcome of our experiment on crowd-
sourcing the threshold parameter was that a threshold of 0.2 worked well for all the
ensemble and individual systems except the HieCoAtt. The optimal threshold for
HieCoAtt was 0.15. The pixel intensities > t are normalized to lie between zero
and one. We used the threshold parameters obtained using crowd-sourcing for all
our evaluations. Our results improved by searching the right threshold values for
each of the systems when compared to using a uniform threshold for all systems.

Figure 6.4: AMT interface for evaluating visual explanations.

95

6.4 Evaluating Visual Explanations

A good explanation evaluation metric tests how well an explanation sup-
ports the decision made by the system. In light of this, we propose two new crowd-
sourced human evaluation metrics and use them to assess our ensemble explanation.
The first metric asks human judges to compare two machine-generated explanations
and is called the comparison metric, while the second metric determines if the in-
put evidence highlighted by an explanation is sufficient to allow a human judge to
independently arrive at the same prediction and is called the uncovering metric.

6.4.1 Comparison metric

For the comparison metric, we showed two visual explanations side-by-side
to workers on Amazon Mechanical Turk (AMT) along with the image-question (IQ)
pair as well as the ensemble model’s answer and ask them “Which picture highlights
the part of the image that best supports the answer to the question?”. One image is
the explanation map of the ensemble while the other is the explanation map of an
individual system. We provide detailed instructions along with an example to show
what a good visualization looks like. Apart from picking one of the two images as
more interpretable, we also give two more options – “cannot decide” and “wrong
answer” (for when the judge believes the given answer is incorrect).

Since both visual explanations are machine generated, there is no question
of judging explanations based on their similarity to human ones. The evaluation
simply compares explanations based on whether they highlight regions of the image
that support the answer. We note that the ensemble explanation is compared to an
individual system’s explanation map only if that system produced the same output
answer as the ensemble. When multiple individual systems agree with the ensemble
on an output for an IQ pair, then the ensemble explanation is compared to one of
the individual system’s explanation chosen randomly with equal probability.

96

Figure 6.5: The top row shows the uncovering of the explanation map step-by-step
from left-to-right on an instance of the VQA data generated by the LSTM model.
The second row shows the corresponding reference heat-maps beginning from one-
third of the “hottest” region of the explanation going all the way to uncovering the
entire explanation map.

6.4.2 Uncovering metric

The uncovering metric tests whether the input evidence highlighted by a vi-
sual explanation is sufficient to allow a human judge to independently arrive at the
same prediction as the model that produced it. A judge is shown the question and a
partially uncovered image and asked to pick an answer from a multiple choice list
(taken from the multiple-choice version of the standard VQA evaluation (Antol et
al., 2015)). A fraction of the most heavily weighted pixels in the visual explana-
tion are “uncovered” and the judge is asked to pick the answer, or choose “cannot
decide” when the partially uncovered image does not support an answer.

First, only the top one-third most intense pixels are uncovered, followed by
the top two-thirds and finally, the entire explanation map is uncovered. The regions
of the image that are not part of the explanation (zero-weighted pixels) are never

97

Figure 6.6: Example of the uncovering metric on the ensemble explanation.

exposed. The three images appear one after the other and turkers have to select
the first partially uncovered image that is sufficient to pick the answer from the
available choices. The Turkers were asked to complete two parts for each instance
and given the following instruction, ”Part 1: Select an answer based on the question
and set of partially visible images; Part 2: Select the first image from the set that
was sufficient to arrive at the answer.” In this way, we evaluate both the ensemble’s
explanation as well those of the individual component systems and compare the
percentage of the explanation map that was uncovered versus the accuracy of the
answers selected by the human subjects. An explanation is better to the extent
that it allows humans to pick the correct answer from a partially uncovered image
showing just the most highly-weighted evidence used by the system. Figure 6.5 and
Figure 6.6 show the step-by-step uncovering metric on the explanation maps for the
LSTM and ensemble models respectively. As evident, the ensemble explanation
maps are more precise than those of the LSTM model’s explanation maps even
though it highlights a bigger region of the image. The second image in Figure 6.6
is sufficient to arrive at the answer but even the third image in Figure 6.5 is barely
enough to decide on an answer, since it is not clear if that object is actually a bear.

A drawback of the aforementioned approach is that if a system tends to
highlight a larger proportion of the overall image, then it would have an undue
advantage over other systems since it would tend to cause a larger fraction of the

98

overall image to be revealed. This is because the evaluation metric discussed above
is based on uncovering some fraction of the non-zero-weighted region of the im-
age. To overcome this drawback, we also measured an alternate normalized version
of the uncovering metric that revealed a fraction of the entire image as opposed
to just the non-zero portion highlighted in the explanation map. So, at each step,
we showed Turkers images that uncovered one-fourth, one-half, and three-fourths
of the highest-weighted pixels in the entire image. In order maintain the ratio, we
frequently had to uncover a number of zero-intensity pixels. The zero intensity pix-
els uncovered are randomly chosen from the entire image, giving rise to a “snow
like” effect as shown in Figure 6.7. Arguably, this approach gives a more fair com-
parison between explanation maps of various systems. Using the normalized pixel
ratio, sometimes the entire explanation map is revealed in the very first step of re-
vealing one-fourth of the entire image, as evident from Figure 6.7, while other times
the explanation map covers more than one-fourth of all the pixels and therefore is
completely revealed in further steps of the normalized uncovering metric, as shown
in Figure 6.8.

6.5 Experimental Results and Discussion

We evaluated our visual explanation maps for the VQA ensemble using the
aforementioned comparison and uncovering metrics. The image-question (IQ) pairs
used for generating and evaluating explanations were taken from the test-set of the
VQA challenge. Three workers evaluated each of 200 random test IQ pairs for each
of the different explanation ensembling methods discussed in Section 6.3 for each
of the metrics. We then aggregated the Turkers decisions using voting, and when
there is no agreement among workers, we classified those instances under a “no
agreement” category and we ignored the instances for which the majority of Turkers
thought the ensemble’s answer was incorrect. For the comparison and uncovering
metrics, we obtained inter-annotator agreement of 88% and 79% respectively.

99

Figure 6.7: The top and bottom rows show the step-by-step uncovering metric using
the normalized pixel ratio on the explanation map from left-to-right for the ensem-
ble and LSTM models respectively.

Figure 6.8: The top and bottom rows show the step-by-step uncovering metric using
the normalized pixel ratio on the explanation map from left-to-right for the ensem-
ble and LSTM models respectively.

100

Approach Ensemble Single System Cannot decide

Ensemble (WA)

LSTM 58 36 3
HieCoAtt 62 27 6

MCB 52 41 2

Ensemble (PWA)

LSTM 64 28 3
HieCoAtt 69 26 1

MCB 61 35 1

Table 6.1: Results obtained using the comparison metric for evaluating the ensem-
ble explanation map in terms of the percentage of cases a system’s explanation was
preferred, averaged for each ensembling approach. The remaining percentage of
the time there was no majority agreement among human subjects. The bold figures
imply statistical significance (p-value< 0.05).

6.5.1 Comparison metric

Table 6.1 shows the results obtained when comparing the ensemble explana-
tion using the weighted average (WA) and the penalized weighted average (PWA)
approaches with the individual systems’ explanation. The results are averaged
across instances of image-question pairs for each individual system. The rows in
Table 6.1 show the percentage of time the Turkers found the single system vs. the
ensemble explanation map to be qualitatively more interpretable. For a small per-
centage of cases, the Turkers were not able to decide if either the single system’s
or the ensemble’s explanation was better, displayed in the third column and for the
remaining percentage of time there was no majority agreement among the Turkers.
We found that, on an average, the Turkers considered our ensemble’s explanation
more interpretable than an individual model’s explanation 61% of the time.

We used the WA approach for generating the ensemble explanation when
more than one system agreed with the ensemble’s output prediction. We observed
that the ensemble’s explanation for an IQ pair was better than the LSTM, the
HieCoAtt and the MCB models 58%, 62% and 52% of the time respectively. We

101

performed a pairwise t-test with a significance level of 0.05 and found that the en-
semble explanation using the WA approach was significantly better (p-value< 0.05)
than the LSTM and the HieCoAtt systems’ explanation.

When there was at least one individual system that did not agree with the
ensemble on an output, we used the PWA approach for generating the explanation
map. We observed that the ensemble’s explanation for an IQ pair was better than
the LSTM, the HieCoAtt and the MCB models 64%, 69% and 61% of the time
respectively. We found that the ensemble explanation using the PWA approach was
significantly better (p-value< 0.05) than all three individual systems’ explanations
on a pairwise t-test with significance level 0.05. We note that there were scenarios,
like when two systems agreed with the ensemble when we compared both WA and
PWA ensemble explanation maps to an individual system’s explanation map. In
such scenarios, we observed that PWA performed better than WA.

6.5.2 Uncovering metric

After each step of uncovering either 1/3, 2/3, or all of the explanation map
for an image, we measured for what percentage of the test cases a human judge
both decided they were able to answer the question and picked the correct answer.
We found that, on an average, the penalized weighted average (PWA) ensemble ex-
planation was sufficient 69% of the time and the weighted average (WA) ensemble
explanation was sufficient 64% of the time to arrive at the correct answer from a
set of answers for a given image-question pair. For the same IQ pairs and answer
choices, the LSTM, the HieCoAtt, and the MCB models had explanation maps that
were sufficient to arrive at the right answer only 42%, 38% and 46% of the time
respectively. Table 6.2 shows the breakup of these percentages across the three
partially uncovered images ranging from the least visible to entirely uncovered ex-
planation maps for the ensemble and each of the individual models.

We observed that the Turkers were unable to decide on an answer based on
just the PWA and WA ensemble explanation and required the entire image for about
14% and 17% of the questions respectively. However, for the individual models, the
same fraction was 43% for the LSTM, 51% for the HieCoAtt and 42% for the MCB

102

System One-third Two-thirds Entire map

Ensemble (PWA) 29 35 69
Ensemble (WA) 17 28 64

LSTM 10 22 42
HieCoAtt 9 19 38

MCB 11 20 46

Table 6.2: Results obtained using the uncovering metric averaged over image-
question pairs. Shows the percentage of cases for which a partially revealed image
was sufficient to arrive at the correct answer. Boldface indicates maximum in each
column.

models. There was no agreement among the Turkers for the remaining percentage
of cases. The ensemble explanation generated using PWA was significantly better
(p-value< 0.05) than all three individual systems’ explanation on a pairwise t-test
with significance level 0.05. On the other hand, the ensemble explanation generated
using WA exhibited trends towards statistical significance with all three individual
systems’ explanation. Also, the ensemble explanations generated by neither WA
nor PWA were significantly better than the other.

System One-fourth One-half Three-fourths

Ensemble (PWA) 23 38 76
Ensemble (WA) 21 34 71

LSTM 10 24 65
HieCoAtt 10 23 57

MCB 12 25 64

Table 6.3: Results obtained using the uncovering metric averaged over image-
question pairs. Shows the percentage of cases for which a partially revealed image
was sufficient to arrive at the correct answer based on the normalized uncovered
pixel ratio. Boldface indicates maximum in each column.

We also experimented with uncovering a fraction of the entire image and
not just the explanation map. The human judges were shown images that had 1/4,
1/2 and 3/4 of the uncovered regions as shown in Figure 6.7. If the Turkers were

103

still unable to decide on an answer even after revealing 3/4 of the entire image then
they chose the option “still cannot decide”. Table 6.3 shows the results obtained
when uncovering with respect to the entire image and not just the explanation map.
We found that, on an average, the PWA and the WA ensemble explanation were
sufficient 76% and 71% of the time to arrive at the correct answer for a given image-
question pair. For the same image-question pairs and answer choices, the LSTM,
the HieCoAtt, and the MCB models had explanation maps that were sufficient to
arrive at the right answer only 65%, 57% and 64% of the time respectively. The
remaining percentage of time the Turkers were unable to decide on an answer even
after looking at three-fourth of the entire image. We observed that the difference
between the performance of the ensemble and individual systems when uncovering
with respect to the entire image is not as pronounced as uncovering with respect to
the explanation map; however, the overall trends in the results are very similar.

We found that the ensemble explanation using the PWA approach exhibited
trends towards statistical significance with all three individual system’s explana-
tion. On the other hand, the ensemble explanation using the WA approach exhib-
ited trends towards statistical significance with the HieCoAtt system’s explanation.
Also, the ensemble explanations generated by neither WA or PWA were signifi-
cantly better than the other. Our choice for the fractions of the uncovered image
at each step was decided so that the total number of images to be judged is neither
too many (if a very small fraction is revealed) nor too few (if a very big fraction
is revealed). The optimal number of fractions improves the effectiveness of the
uncovering metric.

6.6 In-depth Analysis

To get further insights into the results obtained using our evaluation metrics,
we performed further analysis by evaluating the results based on the number of
systems that agreed with the ensemble on the answer of an IQ pair. We now discuss
these results in detail below for each of the two evaluation metrics proposed.

104

Approach Ensemble Single system Cannot decide

Case 1: Any one system agrees with the ensemble

WA 55 37 4
PWA 59 36 2

Case 2: Any two systems agree with the ensemble

WA 62 31 5
PWA 71 24 2

Case 3: All three systems agree with the ensemble

WA 61 34 2

Table 6.4: Results obtained using the comparison metric for evaluating the ensem-
ble explanation map in terms of the percentage of the time, averaged for each case.
The ensemble’s explanation maps were generated using both the Weighted Average
(WA) and the Penalized Weighted Average (PWA) approaches when one or two sys-
tems agree with the ensemble’s output. PWA approach is not applicable when all
the systems agree with the ensemble’s prediction. The bold figures imply statistical
significance (p-value< 0.05).

6.6.1 Comparison metric:

Table 6.4 shows the results obtained when any one system, any two systems,
and all three systems agree on the output of the ensemble. For the case when any
one system agrees with the ensemble, we averaged the results over IQ pairs for each
system that agreed with the ensemble’s output. The weighted average (WA) com-
bines the explanation map of the system that agrees with the ensemble on the output
along with the other two systems’ explanation maps generated by forcing them to
produce maps for the answer predicted by the ensemble. We found that subtracting
the thresholded explanation maps of the systems that did not agree with the ensem-
ble’s output using the penalized weighted average (PWA) approach worked slightly
better than using the weighted average approach. For the case when any two sys-
tems agree with the ensemble, we average the results over IQ pairs for every set of
two systems that agreed with the ensemble’s output and compare results for both
WA and PWA scenarios for generating the ensemble explanation maps. For the case

105

when all three systems agree with the ensemble, we found that using the weighted
average worked better than using equal weights. The PWA approach is not appli-
cable in this scenario since there is no system that disagrees with the ensemble’s
answer prediction.

For each of the three cases, the Turkers are instructed to compare the ensem-
ble explanation to the explanation generated by a random single system that agrees
with the ensemble’s output. For example, for the case when two systems agree with
the ensemble on an IQ pair, say LSTM and HieCoAtt, then the explanation of the
ensemble is compared to the explanation of the LSTM or HieCoAtt systems with a
probability of 0.5. For Table 6.4, the remaining percentage of the time, there was
no majority agreement among the Turkers. We also experimented with taking the
union and intersection of the component explanation maps for various scenarios but
found that they were either too noisy or too minimal and thus do not report them.
We performed a pairwise t-test with significance level 0.05 across several batches
and found that the ensemble explanation generated using PWA approach was al-
ways significantly better (p-value< 0.05 than the single system explanation. The
ensemble explanation generated using WA was significantly better (p-value< 0.05

when at least two systems agreed with the ensemble’s answer.

System One-third Two-thirds Entire map

Ensemble (WA) 18 28 64
LSTM 10 18 37

HieCoAtt 02 13 31
MCB 10 15 44

Table 6.5: Results obtained using the uncovering metric for the individual models
and the weighted average ensemble when all three systems agree with the ensem-
ble’s answer. The figures show the percentage of cases for which a partially revealed
image was sufficient to arrive at the correct answer. Boldface indicates maximum
in each column.

106

System One-third Two-thirds Entire map

Ensemble (PWA) 24 31 69
Ensemble (WA) 20 30 67

LSTM 10 24 46
HieCoAtt 15 25 45

MCB 11 25 48

Table 6.6: Results obtained using the uncovering metric for the individual models
and the ensemble systems when any two systems agree with the ensemble’s answer
averaged over IQ pairs. Boldface indicates maximum in each column.

System One-third Two-thirds Entire map

Ensemble (PWA) 34 46 70
Ensemble (forced WA) 12 25 60

LSTM 11 22 41
HieCoAtt 09 19 39

MCB 10 16 48

Table 6.7: Results obtained using the uncovering metric for the individual models
and the ensemble systems when any one system agrees with the ensemble’s answer,
averaged over IQ pairs. Boldface indicates maximum in each column.

6.6.2 Uncovering metric:

After each step of uncovering either 1/3, 2/3, or all of the explanation map
for an image, we measured for what percentage of the test cases a human judge both
decided they were able to answer the question and picked the correct answer. We
found that when all three systems agreed with the ensemble’s answer prediction, the
weighted average explanation ensemble map was sufficient 64% of the time to ar-
rive at the correct answer for a question. For the same question and answer choices,
the LSTM, the HieCoAtt, and the MCB models had explanation maps that were
sufficient to arrive at the right answer only 37%, 31% and 44% of the time respec-
tively. Table 6.5 shows the breakup of these percentages across the three partially
uncovered images ranging from the least visible to entirely uncovered explanation
maps for the ensemble and each of the individual models. We observed that the

107

Turkers were unable to decide on an answer based on just the ensemble explanation
and required the entire image for about 17% of the questions. However, for the in-
dividual models, the same fraction was 43% for the LSTM, 51% for the HieCoAtt
and 42% for the MCB models. There was no agreement among the Turkers for the
remaining percentage of the cases. The penalized weighted average was not appli-
cable in this scenario since there was no system that disagreed with the ensemble’s
prediction.

When any two systems agreed with the ensemble’s prediction, we consid-
ered two cases – weighted average (WA) of the two systems’ maps that agreed and
penalized weighted average (PWA) of the two systems’ map that agreed, discount-
ing the system’s map that disagreed. We averaged the results over IQ pairs for every
set of two systems that agreed with the ensemble’s output. Using the uncovering
metric, we found that overall the ensemble explanation using the WA and PWA
approaches was sufficient 67% and 69% of the time respectively, to arrive at the
correct answer. The LSTM, the HieCoAtt and the MCB models’ explanation maps
were sufficient to answer a question correctly only about 46%, 45% and 48% of
the time respectively. Table 6.6 shows the breakup of these percentages across the
range of partially uncovered explanation maps. The Turkers were not able to de-
cide on an answer based on just the ensemble explanation and required the entire
image for the PWA and WA approaches for only 14% and 20% of the questions
respectively. However, for the individual models, the same ratio was 39% for the
LSTM, 42% for the HieCoAtt and 34% for the MCB models respectively. For the
remaining percentage of cases, there was no agreement among the Turkers.

When any one system agreed with the ensemble’s prediction, we consid-
ered two cases – weighted average (WA) of the system’s map that agrees combined
with forcibly generated explanation maps based on the ensemble’s output for the
other two systems and the penalized weighted average (PWA) of the agreeing sys-
tem’s map discounting the other two systems’ maps that disagreed. We found that
overall the ensemble explanation using the WA and PWA approaches was sufficient
70% and 60% of the time respectively, to arrive at the correct answer. The LSTM,
the HieCoAtt and the MCB models’ explanation maps were sufficient to answer a

108

System One-fourth One-half Three-fourths

Ensemble (WA) 19 30 71
LSTM 10 19 59

HieCoAtt 04 16 49
MCB 13 20 51

Table 6.8: Results obtained using the uncovering metric for the individual models
and the weighted average ensemble based on the normalized uncovered pixel ra-
tio when all three systems agree with the ensemble’s answer. Boldface indicates
maximum in each column.

System One-fourth One-half Three-fourths

Ensemble (PWA) 26 49 78
Ensemble (WA) 25 43 74

LSTM 13 27 69
HieCoAtt 12 26 61

MCB 15 30 67

Table 6.9: Results obtained using the uncovering metric for the individual models
and ensemble systems based on the normalized uncovered pixel ratio when any two
systems agree with the ensemble’s answer. Boldface indicates maximum in each
column.

question correctly only about 41%, 39% and 48% of the time respectively. Table 6.7
shows the breakup of these percentages across the range of partially uncovered ex-
planation maps. The Turkers were not able to decide on an answer based on just
the ensemble explanation and required the entire image for the PWA and WA ap-
proaches for only 10% and 24% of the questions respectively. However, for the
individual models, the same ratio was 46% for the LSTM, 49% for the HieCoAtt
and 38% for the MCB models respectively.

We also experimented with uncovering a fraction of the entire image and
not just the explanation map. The human judges were shown images that had 1/4,
1/2 and 3/4 of the uncovered regions as shown in Figure 6.7. These fractions
are smaller than those used in the previous uncovering experiment because they

109

System One-fourth One-half Three-fourths

Ensemble (PWA) 20 31 73
Ensemble (forced WA) 18 29 67

LSTM 09 24 63
HieCoAtt 08 19 57

MCB 11 26 63

Table 6.10: Results obtained using the uncovering metric for the individual models
and ensemble systems based on the normalized uncovered pixel ratio when any one
system agrees with the ensemble’s answer. Boldface indicates maximum in each
column.

uncover based on the entire image as opposed to just the highlighted regions of the
image. This choice of the fractions was decided so that not too much or too little
of the image is uncovered at each step. Tables 6.8, 6.9 and 6.10 show the results
obtained for the cases when all three systems, any two systems and any one system
agree with the ensemble respectively.

We observed that when all three systems agreed with the ensemble’s answer
prediction, the weighted average explanation ensemble map was sufficient 71% of
the time to arrive at the correct answer for a question when the uncovering was
based on the entire image. For the same question and answer choices, the LSTM,
the HieCoAtt, and the MCB models had explanation maps that were sufficient to
arrive at the right answer only 59%, 49% and 51% of the time respectively, as shown
in Table 6.8. We observed that the Turkers were unable to decide on an answer
based on just the ensemble explanation and required the entire image for about
17% of the questions. However, for the individual models, the same fraction was
25% for the LSTM, 32% for the HieCoAtt and 28% for the MCB models. There
was no agreement among the Turkers for the remaining percentage of the cases.
The penalized weighted average was not applicable in this scenario since there was
no system that disagreed with the ensemble’s prediction.

When any two systems agreed with the ensemble’s prediction, using the
uncovering metric based on the entire image, we found that overall the ensemble

110

explanation using the WA and PWA approaches was sufficient 78% and 74% of
the time respectively, to arrive at the correct answer. The LSTM, the HieCoAtt
and the MCB models’ explanation maps were sufficient to answer the question
correctly only about 69%, 61% and 63% of the time respectively. Table 6.9 shows
the breakup of these percentages across the range of partially uncovered explanation
maps. The Turkers were not able to decide on an answer based on just the ensemble
explanation and required the entire image for the PWA and WA approaches for only
8% and 11% of the questions respectively. However, for the individual models, the
same ratio was 18% for the LSTM, 22% for the HieCoAtt and 19% for the MCB
models respectively. For the remaining percentage of cases, there was no agreement
among the Turkers.

When any one system agreed with the ensemble’s prediction, we found that
overall the ensemble explanation using the WA and PWA approaches was suffi-
cient 73% and 67% of the time respectively, to arrive at the correct answer. The
LSTM, the HieCoAtt and the MCB models’ explanation maps were sufficient to
answer a question correctly only about 63%, 57% and 63% of the time respectively.
Table 6.10 shows the breakup of these percentages across the range of partially un-
covered explanation maps. The Turkers were not able to decide on an answer based
on just the ensemble explanation and required the entire image for the PWA and
WA approaches for only 11% and 18% of the questions respectively. However, for
the individual models, the same ratio was 24% for the LSTM, 33% for the HieCoAtt
and 22% for the MCB models respectively.

6.7 Chapter Summary

In this chapter, we introduced two new methods for ensembling visual ex-
planations: (i) the weighted average and (ii) the penalized weighted average. We
also proposed two metrics for evaluating the quality of visual explanations: (i) the
comparison metric and (ii) the uncovering metric. These metrics measure expla-
nation quality without relying on ground-truth human-generated explanation. We
demonstrated our metrics by evaluating explanation maps generated by our ensem-

111

ble system as well as three other VQA models. On average, our ensemble’s ex-
planation was qualitatively better than individual component models’ explanation
61% of the time using the comparison metric and was sufficient to allow humans to
arrive at the correct answer at least 64% of the time as indicated by the uncovering
metric.

112

Chapter 7

Future Directions

As with all areas of research in AI, the work in this thesis answers some
questions, but it also raises many new ones. In this chapter, we discuss possible
future direction for our research focusing on two main areas: (i) Stacking With
Auxiliary Features (SWAF) and (ii) Explainable AI (XAI).

7.1 Stacking With Auxiliary Features (SWAF)

In Chapter 5, we demonstrated SWAF on VQA. One of the auxiliary fea-
tures we proposed was using the visual explanation generated by individual deep
neural networks. Goyal et al. (2016) showed that VQA models focused on appro-
priate words in the question while answering. Their findings revealed that a word’s
POS tag determines its importance in a question. Unsurprisingly, the wh-words are
the most important followed by the adjectives and then nouns. This means that the
language component of a VQA model is as important as its visual component. As
an extension of our visual explanation work, we believe that the words in the ques-
tion to which a system attends can also be used to improve ensembling. The words
in a question that a system focuses on would inform how reliable is its output. The
correlation between different systems’ word attention along with visual localization
map could form more powerful auxiliary features for SWAF.

Another direct extension of our work would be to evaluate SWAF on other
problems in natural language understanding and computer vision. Textual question
answering in context and activity recognition in videos are promising avenues for
SWAF application. There are several datasets for textual question answering in a
wide range of domains including MS MARCO (Nguyen et al., 2016), NewsQA
(Trischler et al., 2016) and SQuAD (Rajpurkar et al., 2016). UT-interaction (Ryoo
et al., 2010) and UCF action1 are some of the datasets for human activity recognition

1http://crcv.ucf.edu/data/UCF_Sports_Action.php

113

http://crcv.ucf.edu/data/UCF_Sports_Action.php

in videos.
The SWAF algorithm takes a data instance as input and outputs a binary

accept/reject decision. For the successful application of SWAF to many of the ma-
chine learning applications, our work included turning problems with structured
outputs into a binary classification of outputs produced by component systems. An
exciting research direction would be to explore SWAF to actually combine struc-
tured outputs from multiple systems. Another avenue of research is to apply SWAF
for problems in textual and visual data generation. Visual dialog is a task that re-
quires an AI agent to hold a meaningful dialog with humans in natural language
about visual content (Das et al., 2017b). Another example of a dialog dataset is
the Ubuntu corpus (Lowe et al., 2015) which consist of natural conversational type
dialogs.

Recently, ensembles of deep learning models have gained huge popularity
because of their ground-breaking success in many AI applications (Fukui et al.,
2016; He et al., 2016; Yang et al., 2018). However, many of these systems are
ensembles of neural models with different seeds. Because the neural architecture
remains the same, these underlying models make almost the same predictions and
have correlated errors. On the other hand, SWAF relies on diverse models with
somewhat de-correlated errors along with auxiliary features for making good pre-
dictions. How good is SWAF for combining neural models with different seeds?
This could be an interesting question to be explored in the future. We think that
there are benefits in ensembling neural models with different architectures over
those with the same architecture but different seeds.

7.2 Explainable AI (XAI)

Our work on explainable AI used visual explanations for VQA. An obvious
research problem is to explore using textual explanations along with the visual ex-
planations for VQA. Park et al. (2016) propose a pointing and justification model
(PJ-X) that attempts to generate a textual explanation as well as point to the ev-
idence in the image. However, they use features from their original model that

114

generates answers for image-question pairs and feed it into a new LSTM model
for generating the textual explanation. Therefore, the explanation is generated in
a “post-hoc” manner. A more faithful explanation would be one that attempts to
explain the concepts in a region of the image the model attends to, using natural
language. One way of finding such natural-language concepts in sub-regions of the
image that contributed to the system’s answer is by using network dissection (Bau et
al., 2017). In this method, the semantics of the hidden units in a CNN are scored on
how well they detect a number of visual concepts including objects, parts, scenes,
textures, materials, and colors. These natural-language concepts can then be used
to generate a coherent explanatory sentence using either a template-based approach
or a trained LSTM.

Generating textual explanations has multiple advantages. First, it can be
used along with visual explanations to provide a more powerful and complete justi-
fication for the model’s decision. Second, textual explanations from multiple mod-
els can be used as auxiliary features just like our work on using the visual expla-
nation for improving VQA. The idea behind using textual explanations as auxiliary
features is to trust agreement between systems when their explanations are also co-
herent just like in the case of visual explanation. Machine translation metrics such
as BLEU (Papineni et al., 2002) and METEOR (Banerjee and Lavie, 2005) can used
for comparing similarity between system generated textual explanations. Another
interesting feature that captures the semantics of the text is to use embeddings of
the words in the justification for calculating similarity. We hope that using the tex-
tual and visual explanations together as features would enable the stacker to learn
to rely on systems whose justification is congruent with its classification.

Ensembling natural-language explanations obtained from individual com-
ponent systems is another interesting and challenging future direction. Combining
textual explanations from multiple models is in itself a challenging task. Several
techniques have been deployed for combining structured prediction model outputs
for Machine Translation (MT) and Parsing. Minimum Bayes-Risk decoding is a
very well known technique for finding a consensus translation that has the min-
imum expected loss under the distribution given by a k-best list of translations

115

(Kumar and Byrne, 2004). DeNero et al. (2010) proposed a model combination
technique by learning a consensus model over the n-gram features of multiple un-
derlying component MT models. A hierarchical system combination strategy at the
word-, phrase- and sentence- levels has also been used in the past (Huang and Pa-
pineni, 2007). In parsing, there have been several work for combining structured
textual output from multiple models (Sagae and Lavie, 2006; Martins et al., 2008;
Fossum and Knight, 2009). Some of these ideas from MT and parsing could be
adopted for research in ensembling textual explanations.

The ensembled visual explanation generated using our approach described
in Chapter 6 can be combined with the ensembled textual explanation so that the
natural-language concepts in the textual explanation directly point to corresponding
visual-explanation regions in the image. By ensembling textual explanation along
with the visual explanation, we would obtain an ensemble that is not just good in
performance but also generates a consensus explanation for the ensemble.

Even though visual explanations generated by deep learning models are
noisy and many times unconvincing to a human, we have seen that they can prove to
be useful for classification in the form of auxiliary features to the stacker as demon-
strated in Chapter 5. An interesting future direction would be to explore if there is
any correlation between explanations that are rated qualitatively better by humans
and those that are actually useful to the stacker.

Evaluating explanations is a challenging and an ongoing area of research.
The metrics proposed by us in this thesis in Chapter 6 solves the problem of hav-
ing to compare machine generated explanation to human-generated explanation.
However, it is still not perfect and raises the question of whether the metric actu-
ally judges if the explanation is explaining what the model is doing. Arguably, the
uncovering metric only judges if a given explanation is plausible or relevant. If
we compared two explanation generating methods for the same model, ideally an
evaluation metric would rate that explanation higher which actually tells what the
model is doing. However, the comparison metric might fail to capture this subtlety
and would instead choose the explanation that makes the model look better. An ex-
planation evaluation metric that overcomes these challenges would be an interesting

116

research direction.
An example of a reasonable explanation evaluation metric that uses crowd-

sourcing is one that can evaluate if explanation allows the user to trust the ma-
chine’s answer correctly or not on problems where the human is not an expert. The
fine-grained recognition task such as the Caltech-UCSD bird species identification
dataset (Welinder et al., 2010) is an example of such a problem.

117

Chapter 8

Conclusion

Time and again, ensembling methods have proven to be a powerful tool for
important applications in the domain of Natural Language Processing and Com-
puter Vision. Ensembles of deep learning models have produced state-of-the-art
performance on problems that are shaping the future of how humans interact with
AI systems. The tremendous success of these systems has raised questions about
trust between humans and AI systems. This has led to a new direction of research
on modern explainable AI systems.

In this thesis, we considered the research problem of ensembling multiple
machine learning systems applied to problems with structured outputs. We pro-
posed Stacking with Auxiliary Features (SWAF), a novel approach to ensembling
multiple diverse system outputs, and demonstrated its success on a wide variety of
challenging tasks. These tasks had data in multiple modalities. Knowledge Base
Population (KBP) used a text corpus as data, Object detection used images and
Visual Question Answering (VQA) included data in both modalities. We also pro-
posed novel methods for ensembling and evaluating visual explanations of VQA
models.

We introduced two types of auxiliary features: (i) instance features and
(ii) provenance features. The instance features enable the stacking meta-classifier
to learn what component systems to rely on for what instance types. The prove-
nance features enable the stacker to learn that an output is reliable not merely if
multiple systems agree on it but if they also agree “where” they got the output. The
auxiliary features enable the system to learn to appropriately use provenance and
instance information to aid the optimal integration of multiple systems.

For the KBP task of relation extraction, the entity type and relation type
served as the instance features. For entity linking, the entity types served as instance
features. For the object detection task, the object categories were the instance fea-
tures. The provenance feature for both KBP tasks was a measure of overlap between

118

systems’ provenance. For the object detection, the bounding boxes around object
instances served as provenance features.

We also proposed a novel variant of SWAF for ensembling component sys-
tems both with training data (supervised systems) and without training data (unsu-
pervised systems). We demonstrated this new variant of SWAF on the KBP tasks
of relation extraction and entity linking. We obtained promising results, achieving
a new state-of-the-art on both tasks and beating our own prior performance using
only systems with training data. We found that adding the unsupervised ensemble
increased recall substantially.

We proposed four different categories of auxiliary features to ensemble VQA
systems, three of which can be inferred from an image-question pair. For the fourth
category of features, we introduced the novel idea of using explanations to improve
ensembling. We demonstrated how visual explanations for VQA (represented as
localization maps) could be used to aid stacking with auxiliary features. This ap-
proach effectively utilized information on the degree to which systems agree on
the explanation of their answers. We showed that the combination of all of these
categories of auxiliary features, including explanation, gave the best performance.

Visual explanations, which highlight the parts of an image that support a
vision system’s conclusion, can help us understand the decisions made by Visual
Question Answering (VQA) systems. This in turn aids error analysis, increases
transparency and helps build trust with human users. Towards this end, we pro-
posed two novel methods for ensembling the explanation maps of multiple systems
to produce improved ensemble explanations. Crowd-sourced human evaluations
indicated that our ensemble visual explanation significantly qualitatively outper-
formed each of the component systems’ visual explanations.

Research on explainable AI systems is incomplete without a proper evalu-
ation metric to measure their effectiveness and usefulness. In this thesis, we pro-
posed two such metrics that measure explanation quality without the need for a
ground-truth human-generated explanation. Our evaluation metrics rely on crowd-
sourced human judgments on simple tasks involving comparing visual explanations
or making decisions from partially revealed images. We demonstrated our metrics

119

by evaluating explanation maps generated by our ensemble system as well as three
component VQA models.

The work done in this thesis served to advance the state-of-the-art on several
machine learning applications in computational linguistics and vision. We are opti-
mistic that our research will motivate the development of improved AI systems that
do not just learn and make decisions but also explain their choices. We are hopeful
of a bright future for AI where humans and intelligent systems interact seamlessly.

120

References

Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of
visual question answering models. arXiv preprint arXiv:1606.07356, 2016.

David W. Aha, Trevor Darrell, Michael Pazzani, Darryn Reid, Claude Sammut, and
Peter Stone (Eds.). Explainable Artificial Intelligence (XAI) Workshop at IJCAI,
2017.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to com-
pose neural networks for question answering. arXiv preprint arXiv:1601.01705,
2016.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural mod-
ule networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2016), pages 39–48, 2016.

Gabor Angeli, Arun Chaganty, Angel Chang, Kevin Reschke, Julie Tibshirani,
Jean Y Wu, Osbert Bastani, Keith Siilats, and Christopher D Manning. Stan-
ford’s 2013 KBP system. In TAC2013, 2013.

Gabor Angeli, Victor Zhong, Danqi Chen, Arun Chaganty, Jason Bolton,
Melvin Johnson Premkumar, Panupong Pasupat, Sonal Gupta, and Christo-
pher D. Manning. Bootstrapped self training for knowledge base population.
In Proceedings of the Eighth Text Analysis Conference (TAC2015), 2015.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C. Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In The
IEEE International Conference on Computer Vision (ICCV), December 2015.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation
with improved correlation with human judgments. In Proceedings of the ACL
workshop on intrinsic and extrinsic evaluation measures for machine translation
and/or summarization, volume 29, pages 65–72, 2005.

Michele Banko, Oren Etzioni, and Turing Center. The tradeoffs between open and
traditional relation extraction. In ACL08, volume 8, pages 28–36, 2008.

121

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Net-
work dissection: Quantifying interpretability of deep visual representations. In
Proccedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3319–3327, 2017.

Thomas Berg and Peter N Belhumeur. How do you tell a blackbird from a crow?
In Proceedings of ICCV2013, 2013.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabora-
tively created graph database for structuring human knowledge. In Proceedings
of the 2008 ACM SIGMOD International Conference on Management of Data,
2008.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Torralba, and Frédo Durand. What
do different evaluation metrics tell us about saliency models? IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI2018), 2018.

Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Neva-
tia. ABC-CNN: An attention based convolutional neural network for Visual
Question Answering. arXiv preprint arXiv:1511.05960, 2015.

Xiao Cheng, Bingling Chen, Rajhans Samdani, Kai-Wei Chang, Zhiye Fei, Mark
Sammons, John Wieting, Subhro Roy, Chizheng Wang, and Dan Roth. Illinois
cognitive computation group UI-CCG TAC 2013 entity linking and slot filler vali-
dation systems. In Proceedings of the Sixth Text Analysis Conference (TAC2013),
2013.

Franois Chollet. Keras. https://github.com/fchollet/keras, 2015.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2005), volume 1, pages 886–893. IEEE,
2005.

Abhishek Das, Harsh Agrawal, C Lawrence Zitnick, Devi Parikh, and Dhruv Ba-
tra. Human Attention in Visual Question Answering: Do Humans and Deep
Networks Look at the Same Regions? arXiv preprint arXiv:1606.03556, 2016.

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. Hu-
man attention in visual question answering: Do humans and deep networks look

122

https://github.com/fchollet/keras

at the same regions? Computer Vision and Image Understanding, 163:90–100,
2017.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M.F.
Moura, Devi Parikh, and Dhruv Batra. Visual Dialog. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

John DeNero, Shankar Kumar, Ciprian Chelba, and Franz Och. Model combination
for machine translation. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pages 975–983. Association for Computational Linguistics, 2010.

T. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, edi-
tors, First International Workshop on Multiple Classifier Systems, Lecture Notes
in Computer Science, pages 1–15. Springer-Verlag, 2000.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A
web-scale approach to probabilistic knowledge fusion. In Proceedings of the
20th ACM SIGKDD International conference on Knowledge Discovery and Data
mining, pages 601–610. ACM, 2014.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored repre-
sentations in a deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

Asif Ekbal and Sriparna Saha. Stacked ensemble coupled with feature selection for
biomedical entity extraction. Knowledge-Based Systems, 46:22–32, 2013.

Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi Song, Ann Bies, and
Stephanie Strassel. Overview of linguistic resources for the TAC KBP 2015
evaluations: Methodologies and results. In TAC 2015, 2015.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine Learn-
ing Research, 9:1871–1874, 2008.

Nicolas Fauceglia, Yiu-Chang Lin, Xuezhe Ma, and Eduard Hovy. CMU System for
Entity Discovery and Linking at TAC-KBP 2015. In Proceedings of the Eighth
Text Analysis Conference (TAC2015), 2015.

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010.

123

Tim Finin, Dawn Lawrie, Paul McNamee, James Mayfield, Douglas Oard, Nanyun
Peng, Ning Gao, Yiu-Chang Lin, Josh MacLin, and Tim Dowd. HLTCOE partic-
ipation in TAC KBP 2015: Cold Start and TEDL. In Proceedings of the Eighth
Text Analysis Conference (TAC 2015), 2015.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named entity
recognition through classifier combination. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL 2003-Volume 4, pages 168–
171. ACL, 2003.

Victoria Fossum and Kevin Knight. Combining constituent parsers. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers, pages 253–256. Association for Computational Linguis-
tics, 2009.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computa-
tional learning theory, pages 23–37. Springer, 1995.

Lex Fridman, Benedikt Jenik, and Jack Terwilliger. DeepTraffic: Driving Fast
through Dense Traffic with Deep Reinforcement Learning. arXiv preprint
arXiv:1801.02805, 2018.

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and
Marcus Rohrbach. Multimodal Compact Bilinear pooling for Visual Question
Answering and Visual Grounding. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing (EMNLP2016), 2016.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei Han. Graph-based con-
sensus maximization among multiple supervised and unsupervised models. In
NIPS2009, pages 585–593, 2009.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. Compact bilinear
pooling. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR2016), pages 317–326, 2016.

Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. Deformable part
models are convolutional neural networks. In Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition (CVPR2015), pages 437–446,
2015.

124

Ross Girshick. Fast R-CNN. In International Conference on Computer Vision
(ICCV2015), 2015.

Bryce Goodman and Seth Flaxman. European union regulations on algorithmic
decision making and a ”right to explanation”. AI Magazine, 38(3), 2017.

Yash Goyal, Akrit Mohapatra, Devi Parikh, and Dhruv Batra. Towards Transparent
AI Systems: Interpreting Visual Question Answering Models. arXiv preprint
arXiv:1608.08974, 2016.

David Gunning. Explainable Artificial Intelligence (XAI), DARPA Broad Agency
Announcement. 2016.

Zhengyan He, Shujie Liu, Yang Song, Mu Li, Ming Zhou, and Houfeng Wang.
Efficient collective entity linking with stacking. In EMNLP2013, pages 426–435,
2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learn-
ing for Image Recognition. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR2016), 2016.

Benjamin Heinzerling, Alex Judea, and Michael Strube. HITS at TAC KBP 2015:
Entity Discovery and Linking,and Event Nugget Detection. In Proceedings of
the Eighth Text Analysis Conference (TAC2015), 2015.

John C. Henderson and Eric Brill. Exploiting diversity in natural language pro-
cessing: Combining parsers. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP99), pages 187–194, College
Park, MD, 1999.

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt
Schiele, and Trevor Darrell. Generating Visual Explanations. arXiv preprint
arXiv:1603.08507, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

Fei Huang and Kishore Papineni. Hierarchical system combination for machine
translation. In EMNLP-CoNLL, pages 277–286, 2007.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adap-
tive mixtures of local experts. Neural computation, 3(1):79–87, 1991.

125

Dinesh Jayaraman and Kristen Grauman. Zero-shot recognition with unreliable
attributes. In Advances in Neural Information Processing Systems, pages 3464–
3472, 2014.

Heng Ji and Ralph Grishman. Knowledge base population: Successful approaches
and challenges. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies-Volume 1, pages
1148–1158. Association for Computational Linguistics, 2011.

Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian. Overview of TAC-
KBP2015 Tri-lingual Entity Discovery and Linking. In Proceedings of the Eighth
Text Analysis Conference (TAC2015), 2015.

H. Ji, J. Nothman, and H. Trang Dang. Overview of TAC-KBP2016 Tri-lingual
EDL and its impact on end-to-end Cold-Start KBP. In Proceedings of TAC, 2016.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.

Edward Johns, Oisin Mac Aodha, and Gabriel J Brostow. Becoming the expert-
interactive multi-class machine teaching. In Proceedings of CVPR2015, 2015.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for composi-
tional language and elementary visual reasoning. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.

Kushal Kafle and Christopher Kanan. Answer-type prediction for visual question
answering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2016), June 2016.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neu-
ral networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (CVPR2014), pages 1725–1732, 2014.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in Neural
Information Processing Systems (NIPS2015), pages 3294–3302, 2015.

126

Bryan Kisiel, Bill McDowell, Matt Gardner, Ndapandula Nakashole, Em-
manouil A. Platanios, Abulhair Saparov, Shashank Srivastava, Derry Wijaya, and
Tom Mitchell. CMUML system for KBP 2015 Cold Start Slot Filling. In Pro-
ceedings of the Eighth Text Analysis Conference (TAC2015), 2015.

Marcin Korytkowski, Leszek Rutkowski, and Rafał Scherer. Fast image classifica-
tion by boosting fuzzy classifiers. Information Sciences, 327:175–182, 2016.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua
Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
Visual Genome: Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vision (IJCV2017),
123(1):32–73, 2017.

Shankar Kumar and William Byrne. Minimum bayes-risk decoding for statistical
machine translation. Technical report, DTIC Document, 2004.

H Chad Lane, Mark G Core, Michael Van Lent, Steve Solomon, and Dave Gom-
boc. Explainable artificial intelligence for training and tutoring. Technical report,
2005.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common
objects in context. In European Conference on Computer Vision (ECCV2014),
pages 740–755. Springer, 2014.

Ryan Lowe, Nissan Pow, Iulian V Serban, and Joelle Pineau. The ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems.
In 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue,
page 285, 2015.

David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical question-
image co-attention for visual question answering. In Advances In Neural Infor-
mation Processing Systems (NIPS2016), pages 289–297, 2016.

127

Xiaoqiang Luo. On coreference resolution performance metrics. In Proceedings
of the Conference on Human Language Technology and Empirical Methods in
Natural Language Processing (HLT-EMNLP), pages 25–32, 2005.

Mateusz Malinowski and Mario Fritz. A multi-world approach to question an-
swering about real-world scenes based on uncertain input. In Z. Ghahramani,
M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 1682–1690. Curran Asso-
ciates, Inc., 2014.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Ensemble of exemplar-
svms for object detection and beyond. In 2011 International Conference on Com-
puter Vision, pages 89–96. IEEE, 2011.

André FT Martins, Dipanjan Das, Noah A Smith, and Eric P Xing. Stacking de-
pendency parsers. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 157–166. Association for Computational
Linguistics, 2008.

David McClosky, Sebastian Riedel, Mihai Surdeanu, Andrew McCallum, and
Christopher D Manning. Combining joint models for biomedical event extrac-
tion. BMC Bioinformatics, 2012.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for
relation extraction without labeled data. pages 1003–1011. Association for Com-
putational Linguistics (ACL2009), 2009.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. Ms marco: A human generated machine reading com-
prehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han. Image question answering
using convolutional neural network with dynamic parameter prediction. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR2016), pages 30–38, 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting on association for computational linguistics, pages 311–318. Associa-
tion for Computational Linguistics, 2002.

128

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Bernt Schiele, Trevor Dar-
rell, and Marcus Rohrbach. Attentive explanations: Justifying decisions and
pointing to the evidence. arXiv preprint arXiv:1612.04757, 2016.

Ted Pedersen. A Simple Approach to Building Ensembles of Naive Bayesian Clas-
sifiers for Word Sense Disambiguation. In Proceedings of the Third Conference
on Natural language learning (NAACL2000), pages 63–69, 2000.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vec-
tors for word representation. In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP2014), pages 1532–1543,
2014.

Lorenzo Peppoloni, Massimo Satler, Emanuel Luchetti, Carlo Alberto Avizzano,
and Paolo Tripicchio. Stacked generalization for scene analysis and object recog-
nition. In Intelligent Engineering Systems (INES), 2014 18th International Con-
ference on, pages 215–220. IEEE, 2014.

John C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Peter J. Bartlett, Bernhard Schölkopf, Dale
Schuurmans, and Alex J. Smola, editors, Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 1999.

Nazneen Fatema Rajani and Raymond J. Mooney. Combining Supervised and
Unsupervised Ensembles for Knowledge Base Population. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing
(EMNLP-16), 2016.

Nazneen Fatema Rajani and Raymond J. Mooney. Ensembling visual explanations
for vqa. In Proceedings of the NIPS 2017 workshop on Visually-Grounded Inter-
action and Language (ViGIL), December 2017.

Nazneen Fatema Rajani and Raymond J. Mooney. Stacking With Auxiliary Fea-
tures. In Proceedings of the Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence (IJCAI2017), Melbourne, Australia, August 2017.

Nazneen Fatema Rajani and Raymond J. Mooney. Stacking With Auxiliary Fea-
tures for Visual Question Answering. In Proceedings of the 16th Annual Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2018.

129

Nazneen Fatema Rajani, Vidhoon Viswanathan, Yinon Bentor, and Raymond J.
Mooney. Stacked Ensembles of Information Extractors for Knowledge-Base
Population. In Association for Computational Linguistics (ACL2015), pages
177–187, Beijing, China, July 2015.

Nazneen Fatema Rajani, Mihaela A. Bornea, and Ken Barker. Stacking With Aux-
iliary Features for Entity Linking in the Medical Domain. In Proceedings of the
ACL workshop on BioNLP 2017, pages 39–47, 2017.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

Vasili Ramanishka, Abir Das, Jianming Zhang, and Kate Saenko. Top-down vi-
sual saliency guided by captions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR2017), pages 3135–3144, 2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Neural Information
Processing Systems (NIPS2015), 2015.

Lev Reyzin and Robert E Schapire. How boosting the margin can also boost classi-
fier complexity. In Proceedings of the 23rd international conference on Machine
learning, pages 753–760. ACM, 2006.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should I trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD2016), 2016.

Sebastian Riedel, David McClosky, Mihai Surdeanu, Andrew McCallum, and
Christopher D Manning. Model combination for event extraction in bionlp
2011. In Proceedings of the BioNLP Shared Task 2011 Workshop, pages 51–
55. ACL2011, 2011.

Miguel Rodriguez, Sean Goldberg, and Daisy Zhe Wang. University of Florida
DSR lab system for KBP slot filler validation 2015. In Proceedings of the Eighth
Text Analysis Conference (TAC2015), 2015.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the
right reasons: Training differentiable models by constraining their explanations.
In Proceedings of IJCAI2017, 2017.

130

Benjamin Roth and Dietrich Klakow. Cross-language retrieval using link-based lan-
guage models. In Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, pages 773–774. ACM,
2010.

Benjamin Roth, Tassilo Barth, Michael Wiegand, et al. Effective slot filling based
on shallow distant supervision methods. Proceedings of the Seventh Text Analysis
Conference (TAC2013), 2013.

Benjamin Roth, Nicholas Monath, David Belanger, Emma Strubell, Patrick Verga,
and Andrew McCallum. Building knowledge bases with universal schema: Cold
start and slot-filling approaches. In Proceedings of the Eighth Text Analysis Con-
ference (TAC2015), 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

MS Ryoo, Chia-Chih Chen, JK Aggarwal, and Amit Roy-Chowdhury. An overview
of contest on semantic description of human activities (sdha) 2010. In Recogniz-
ing Patterns in Signals, Speech, Images and Videos, pages 270–285. Springer,
2010.

Kenji Sagae and Alon Lavie. Parser combination by reparsing. In Proceedings
of the Human Language Technology Conference of the NAACL, Companion Vol-
ume: Short Papers, pages 129–132. Association for Computational Linguistics,
2006.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin,
and Klaus-Robert Müller. Evaluating the visualization of what a deep neural net-
work has learned. IEEE Transactions on Neural Networks and Learning Systems,
2017.

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab Kundu, et al. Overview
of UI-CCG systems for event argument extraction, entity discovery and linking,
and slot filler validation. Proceedings of the Seventh Text Analysis Conference
(TAC2014), 2014.

Mark Sammons, Haoruo Peng, Yangqiu Song, Shyam Upadhyay, Chen-Tse Tsai,
Pavankumar Reddy, Subhro Roy, and Dan Roth. Illinois CCG TAC 2015 Event

131

Nugget, Entity Discovery and Linking, and Slot Filler Validation Systems. In
Proceedings of the Eighth Text Analysis Conference (TAC2015), 2015.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In The IEEE International Conference
on Computer Vision (ICCV2017), Oct 2017.

Georgios Sigletos, Georgios Paliouras, Constantine D Spyropoulos, and Michalis
Hatzopoulos. Combining information extraction systems using voting and
stacked generalization. The Journal of Machine Learning Research, 6:1751–
1782, 2005.

Avirup Sil, Georgiana Dinu, and Radu Florian. The IBM systems for trilingual
entity discovery and linking at TAC 2015. In Proceedings of the Eighth Text
Analysis Conference (TAC2015), 2015.

A. Sil, G. Dinu, and R. Florian. The IBM systems for trilingual entity discovery
and linking at TAC 2016. In Proceedings of TAC, 2016.

Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted linear
stacking. arXiv preprint arXiv:0911.0460, 2009.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-scale Image Recognition. In Proceedings of ICLR2015.

Stephen Soderland, Natalie Hawkins, Gene L. Kim, and Daniel S. Weld. University
of Washington system for 2015 KBP cold start slot filling. In Proceedings of the
Eighth Text Analysis Conference (TAC2015), 2015.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A corpus of natural language
for visual reasoning. In Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers), volume 2, pages
217–223, 2017.

Mihai Surdeanu and Heng Ji. Overview of the English slot filling track at the
TAC2014 knowledge base population evaluation. In Proceedings of the Seventh
Text Analysis Conference (TAC2014), 2014.

Mihai Surdeanu. Overview of the TAC2013 knowledge base population evaluation:
English slot filling and temporal slot filling. In Proceedings of the Sixth Text
Analysis Conference (TAC2013), 2013.

132

Damien Teney, Peter Anderson, Xiaodong He, and Anton van den Hengel. Tips and
tricks for visual question answering: Learnings from the 2017 challenge. arXiv
preprint arXiv:1708.02711, 2017.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni,
Philip Bachman, and Kaheer Suleman. Newsqa: A machine comprehension
dataset. arXiv preprint arXiv:1611.09830, 2016.

Jasper RR Uijlings, Koen EA Van de Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International Journal of Computer
Vision (IJCV), 104(2):154–171, 2013.

R. Vilalta and Y. Drissi. A Perspective View and Survey of Meta-learning. Artificial
Intelligence Review, 2002.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Insti-
tute of Technology, 2011.

I-Jeng Wang, Edwina Liu, Cash Costello, and Christine Piatko. JHUAPL TAC-
KBP2013 slot filler validation system. In TAC2013, 2013.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona.
Caltech-UCSD Birds 200. Technical Report CNS-TR-2010-001, California In-
stitute of Technology, 2010.

Matthew Whitehead and Larry Yaeger. Sentiment mining using ensemble classi-
fication models. In Tarek Sobh, editor, Innovations and Advances in Computer
Sciences and Engineering. SPRINGER, Berlin, 2010.

David H. Wolpert. Stacked Generalization. Neural Networks, 5:241–259, 1992.

Huijuan Xu and Kate Saenko. Ask, Attend and Answer: Exploring question-guided
spatial attention for visual question answering. In Proceedings of ECCV2016,
2016.

Dongdong Yang, Senzhang Wang, and Zhoujun Li. Ensemble neural relation ex-
traction with adaptive boosting. arXiv preprint arXiv:1801.09334, 2018.

Xiaoxin Yin, Jiawei Han, and Philip S Yu. Truth discovery with multiple conflict-
ing information providers on the web. Knowledge and Data Engineering, IEEE
Transactions on, 20(6):796–808, 2008.

133

Dian Yu, Hongzhao Huang, Taylor Cassidy, Heng Ji, Chi Wang, Shi Zhi, Jiawei
Han, Clare Voss, and Malik Magdon-Ismail. The wisdom of minority: Un-
supervised slot filling validation based on multi-dimensional truth-finding. In
Proc. The 25th International Conference on Computational Linguistics (COL-
ING2014), 2014.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision (ECCV), pages 818–
833. Springer, 2014.

Y. Zhang, A. Chaganty, A. Paranjape, D. Chen, J. Bolton, P. Qi, and C. Manning.
Stanford at TAC KBP 2016: Sealing Pipeline Leaks and Understanding Chinese.
In Proceedings of TAC, 2016.

Xiangzeng Zhou, Lei Xie, Peng Zhang, and Yanning Zhang. An ensemble of deep
neural networks for object tracking. In 2014 IEEE International Conference on
Image Processing (ICIP), pages 843–847. IEEE, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Object detectors emerge in deep scene CNNs. In Proceedings of the International
Conference on Learning Representations (ICLR2015), 2015.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus.
Simple baseline for visual question answering. arXiv preprint arXiv:1512.02167,
2015.

134

Vita

Nazneen Fatema Rajani was born and raised in Mumbai, India. She ob-

tained her Bachelor’s degree from BITS - Pilani, Goa in 2011. She then moved to

the United States in 2012 to join the University of Texas at Austin to pursue her

graduate studies. She obtained her Masters in Computer Science in 2014 and con-

tinued working on her doctoral studies, where she has been working in the areas

of Natural Language Processing, Computer Vision and at the intersection of both

these areas.

Permanent Address: me@nazneenrajani.com

This dissertation was typeset with LATEX 2ε1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark
of the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

135

mailto:me@nazneenrajani.com

	Chapter Introduction
	Thesis Outline
	List of Contributions

	Chapter Background and Related Work
	Chapter Overview
	Ensemble Algorithms
	Knowledge Base Population
	Slot-Filling (SF)
	Entity Discovery and Linking (EDL)

	ImageNet Object Detection
	Visual Question Answering (VQA)
	Explainable AI (XAI)
	Chapter Summary

	Chapter Stacking with Auxiliary Features
	Chapter Overview
	Prior Work
	Stacking With Auxiliary Features (SWAF)
	Combining Supervised and Unsupervised Ensembles using SWAF
	Chapter Summary

	Chapter Stacking With Auxiliary Features for NLP
	Chapter Overview
	Prior Work
	Stacking with Auxiliary Features for Relation Extraction
	Provenance Features
	Instance Features
	Post-processing
	Eliminating Slot-Filler Aliases
	Experimental Evaluation on 2014 KBP Slot-Filling
	Experimental Evaluation on Cold Start Slot Filling (CSSF)

	Stacking with Auxiliary Features for Entity Linking
	Provenance Features
	Instance Features
	Post-processing
	Experimental Evaluation

	Combining Supervised and Unsupervised Ensembles for KBP
	Unsupervised Ensembling Approach
	Combining Supervised and Unsupervised Ensembles
	New Auxiliary Feature
	Experimental Evaluation

	Chapter Summary

	Chapter Stacking with Auxiliary Features for Computer Vision
	Chapter Overview
	Prior Work
	Stacking with Auxiliary Features for Object Detection
	Auxiliary features for object detection
	Component object detection models
	Experimental Results

	Stacking with Auxiliary Features for VQA
	Auxiliary Features for VQA
	Using Explanations
	Component VQA models
	Experimental Results

	Chapter Summary

	Chapter Ensembling and Evaluating Explanations
	Chapter Overview
	Prior Work
	Ensembling Visual Explanation
	Weighted Average Ensemble Explanation
	Penalized Weighted Average Ensemble Explanation
	Agreement with N systems
	Crowd-sourced hyper-parameter tuning

	Evaluating Visual Explanations
	Comparison metric
	Uncovering metric

	Experimental Results and Discussion
	Comparison metric
	Uncovering metric

	In-depth Analysis
	Comparison metric:
	Uncovering metric:

	Chapter Summary

	Chapter Future Directions
	Stacking With Auxiliary Features (SWAF)
	Explainable AI (XAI)

	Chapter Conclusion
	References
	Vita

