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Abstract

Explanations make Al systems more transparent and also justify their predictions.
The top-ranked Visual Question Answering (VQA) systems are ensembles of
multiple systems; however, there has been no work on generating explanations for
such ensembles. In this paper, we propose different methods for ensembling visual
explanations for VQA using the localization maps of the component systems. Our
crowd-sourced human evaluation indicates that our ensemble visual explanation
is superior to each of the individual system’s visual explanation, although the
results vary depending on the individual system that the ensemble is compared
against as well as the number of individual systems that agree with the ensemble
model’s answer. Overall, our ensemble explanation is better 63% of the time when
compared to any individual system’s explanation. Our algorithm is also efficient
and scales linearly in the number of component systems in the ensemble.

1 Introduction

Visual Question Answering (VQA) [2] requires both language and image understanding, language
grounding capabilities, as well as common-sense knowledge. A variety of methods to address these
challenges have been developed in recent years [1, 4, 11, 7, 3]. The vision component of a typical
VQA system extracts visual features using a deep convolutional neural network (CNN), and the
linguistic component encodes the question into a semantic vector using a recurrent neural network
(RNN). An answer is then generated conditioned on the visual features and the question vector. The
top performing VQA systems are ensembles of neural networks that perform substantially better than
any of the underlying individual models [4].

Although there have been several innovative and ground-breaking ideas deployed to solve VQA
problems, the current state-of-the-art on real-world images is still approximately 15 points behind
human accuracy.! One way to reduce this gap in performance would be to analyze how various
neural architectures arrive at their predicted answers, and then design heuristics or loss functions
that overcome the shortcomings of current networks. This has led to some work in generating
explanations that help interpret the decisions made by CNNs [5, 6, 8]. However, previous work
focuses on generating explanations for individual models even though the top performing systems on
various computer vision and language tasks are ensembles of multiple models. This motivated us to
explore the problem of generating explanations for an ensemble using explanations from underlying
individual models as input. In this paper, we focus on ensembling visual explanations for VQA.

Deep learning models have been shown to attend to relevant parts of the image when answering
a question [5]. The regions of an image on which a model focuses can be thought of as a visual
explanation for that image-question (IQ) pair. The Guided Grad-CAM algorithm [10] highlights the
regions in an image that the model focuses on by generating a heat-map with intensity gradients. We
adapt the Guided Grad-CAM approach to generate heat-map visualizations for three different VQA

"Based on the performance reported on the CodaLab Leader-board and human performance reported on the
task in [2].
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Q: The car at the front of the train is what color? A: red

Figure 1: The top row shows the process of ensembling visual explanation for an IQ pair when the
ensemble model agrees with the MCB and HieCoAtt models (ans: “red”) and disagrees with the
LSTM model (ans: “white”). The bottom row shows the reference 1Q pair and the MCB vs ensemble
visual explanation. The feature map is normalized to obtain the final ensemble visualization.

systems — LSTM [2], MCB [4] and HieCoAtt [7]. By manually analyzing some of the visualizations
from each of these systems, we found that all of them had some degree of noise with high variance
depending on the IQ pair under consideration. We also observed that there was high variance across
visualizations for different models even when they agreed on the answer for a given IQ pair. This
motivated us to ensemble visualizations of the individual models such that the ensembled visual
explanation: (i) aggregates visualizations from appropriate regions of the image, (ii) discounts
visualizations from regions that are not relevant, (iii) reduces noise as much as possible and (iv)
is superior to any individual system’s visualization on a manual evaluation. Results from a crowd-
sourced human evaluation indicate that, on an average, our visual explanation ensemble is superior
to each of the individual system’s visual explanation 63% of the time, while an individual system’s
explanation is better only 35% of the time, and there is either no agreement or the answer is incorrect
the remaining 2% of the time.

2 Algorithm for Ensembling Visual Explanations

Our strategy for ensembling visual explanations for VQA depends on the individual component
models’ answer and visualization for a given image-question (IQ) pair. We first build an ensemble
model that uses Stacking With Auxiliary Features (SWAF) [9] to combine outputs of the three
component systems. We then use our best ensemble model as the system for which we set out to
generate visual explanations. We do this by ensembling the visual explanations of the component
systems that agree with the ensemble answer for an IQ pair. We propose two heuristics for generating
visual explanation ensemble — Weighted Average (WA) and Penalized Weighted Average (PWA).

2.1 Weighted Average Ensemble Explanation
The Weighted Average (WA) ensemble explanation is calculated as follows:
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Here, E is the localization map of the ensemble, 7 and j are used to index into the feature map entries,
K = 3 is the number of component systems, w”* and A* are the weights and localization feature
maps respectively for each of the component systems, and ¢ is a thresholding value for the feature
maps. Thresholding the pixel values for the maps before or after averaging worked well for reducing
noise as well as eliminating several low-intensity regions that arose as a result of combining multiple
noisy maps. A weighted combination of the component feature maps worked better than using equal
weights across all component systems. Since we had access to the performance of the component
systems on validation data, we were able to rank them and use these ranks to determine weights for
combining the feature maps. We weigh the maps of the component systems proportional to their
performance on the validation set and subject to the constraint that the weights sum to one.
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Figure 2: AMT interface for evaluating visual explanation.

2.2 Penalized Weighted Average Ensemble Explanation
The Penalized Weighted Average (PWA) ensemble explanation is calculated as follows:
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Here, I is the localization map of the component system that does not agree with the ensemble. This
assumes that the system that does not agree with the ensemble on an answer is highlighting regions of
the image that are not relevant and so we down-weight those regions in the localization map for the
ensemble. Another variation we explored is forcing the component model that does not agree with
the other models to produce a localization map for the alternate answer picked by the ensemble. We
then calculate the ensemble localization in a way similar to the previous section, when all systems
agree on the output.

2.3 Agreement with N systems

The visual explanation ensemble can be generated for N number of component models using
Equations 1 and 2 and it scales linearly with V. In this paper, we consider three component VQA
systems and there are three scenarios that arise depending on whether the ensemble model agrees
with all three, any two, or only one of the component systems on the answer for an IQ pair. Figure 1
shows the process of ensembling visual explanations for an IQ pair for one of the scenarios. For
all the different scenarios, we first generate a gray-scale GradCam visualization using the approach
described in [10] for each of the component systems. In their approach, given an image and category,
the image is forward propagated through the CNN part of the model. The gradients are set to zero for
all categories except the one under consideration, which is set to 1. This signal is then backpropagated
to the convolutional feature maps of interest and is combined to compute the localization map.
Thereafter, we generate the ensemble explanation using the aforementioned approaches depending
on the scenario under consideration.

We observed that our ensemble model for VQA agreed with all the three systems on the answer for
an IQ pair for approximately half of the VQA test set. We use the weighted average approach for
generating the ensemble visualization map. On approximately one-fourth of the outputs on the test
set, our ensemble model agreed with exactly two component systems. For this scenario, we combine
the localization feature maps of the two systems using both the weighted average and the penalized
weighted average approaches by ignoring and down-weighting the system that does not agree with the
ensemble’s answer respectively. When the ensemble model’s output agreed with only one system’s
output, we generate the ensemble localization map in two ways. First, the ensemble localization was
set equal to the localization of the system it agrees with, minus the localization of the systems it does
not agree with, as in Equation 2. Second, we force the systems that do not agree with the ensemble
to produce localization maps for the answer produced by the ensemble and then use those maps to
calculate the ensemble localization map using Equation 1.

3 Experimental Results and Discussion

We used crowd-sourced human evaluation to compare the visual explanation of the ensemble to the
individual systems’ explanations. We showed two visual explanations side-by-side to workers on
Amazon Mechanical Turk (AMT) along with the 1Q pair as well as the ensemble model’s answer
and ask them “Which picture highlights the part of the image that best supports the answer to the
question?”, as shown in Figure 2. One image is the localization map of the ensemble while the other
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Figure 3: The figure shows results obtained when one system (MCB) agrees, two systems (MCB and
HieCoAutt) agree and when all three systems (MCB, HieCoAtt and LSTM) agree with the ensemble’s
output respectively from left to right. The y-axis indicates the percentage of instances for each of the
agreed upon options chosen by Turkers as well as when there was no agreement among the Turkers.
The z-axis shows the individual system that the ensemble was compared to. Below that is the label
indicating how the ensemble localization map was calculated; f. stands for forced output that agrees
with the ensemble, AT stands for averaging the localization maps followed by thresholding and TA
does the reverse, first thresholds the maps and then averages them.

one is the localization map of one of the systems that the ensemble agrees with, selected at random.
We provide detailed instructions along with an example to show what a good visualization looks like.
Apart from the two images as options, we also give two more options — “cannot decide” and “wrong
answer” so that we can obtain more insights from the results.

Three workers evaluated each of the 100 random instances of IQ pairs for each of the different
variations discussed in Section 2. We then aggregate the options chosen by the Turkers using voting
and when there is no agreement among workers, we classify those instances under the “no agreement’
category. Figure 3 shows the results obtained when only one system, two systems, and all three
systems agree on the output of the ensemble. We used a threshold of 0.25 for all the cases and
scenarios within each case. The pixel intensities > 0.25 are normalized to lie between zero and one.
All the localization maps are converted from gray-scale to heat-maps based on pixel intensity ranges
as a final step before evaluation. We found that, on an average, the Turkers considered our ensemble’s
explanation superior to any individual model’s visualization 63% of time.
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For the case when only one system agrees with the ensemble, we considered the 1Q pairs in which
only the top-ranked MCB system agrees with the ensemble and compare its localization map to the
ensemble localization map obtained using our algorithm. We found that subtracting the thresholded
localization maps of the LSTM and HieCoAtt systems worked slightly better than averaging the
thresholded localization maps obtained by forcing the LSTM and HieCoAvtt systems to produce maps
for answers produced by the MCB model. For the case when two systems agree with the ensemble,
we consider instances when the MCB and HieCoAtt models agree. We show results for three different
scenarios for generating the ensemble localization maps — just using MCB and HieCoAdtt localization
maps, using the LSTM localization map, and finally using the localization map produced by LSTM
for the output that agrees with the other two systems. For the case when all the three systems agree
with the ensemble, we found that using the weighted average worked better than using equal weights
when compared to the HieCoAtt and LSTM localization maps but performed slightly worse when
compared to the MCB maps. We also experimented with taking the union and intersection of the
component localization maps for various scenarios, but found that they were either too noisy or too
minimal and thus do not report them in this paper.

4 Conclusions

Visual explanations can help us understand the decisions made by VQA systems and thereby aid
error analysis and help build trust with human users. We have presented the first approaches to
ensembling visual explanations for VQA. We proposed several methods for combining the heat-maps
of multiple systems to produce improved ensemble explanations. We thoroughly examined various
cases and scenarios based on the number of systems that agree with the ensemble model’s output.
Our evaluation using Mechanical Turk indicated that our visual explanation ensemble is superior to
each of the component system’s visual explanation. Our proposed approach for ensembling visual
explanation is linearly scalable in the number of component systems.
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