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Abstract — This paper focuses on using a Hamming Distance 
Classifier in Neural Networks to find the most optimal move to 
be made in the Tic-Tac-Toe problem such that the game 
always ends in a win or a draw. 

Keywords-Hamming Distance Classifier, Back Propagation 
Network. 

I.  INTRODUCTION  
The Tic-Tac-Toe problem has been addressed in a 

number of ways to improve efficiency, accuracy and reduce 
complexity in the quickest method possible. However, using 
neural networks there are certain advantages to conventional 
approaches. Firstly, the machine tries to approach the 
problem the way human brain works but with no possibility 
of errors and quickly finding the most optimal ways to win 
or in some cases prevent loss. The usual approach is to use 
back-propagation algorithm [2] which minimizes the error 
calculated for each iteration to obtain the best move. In order 
to reduce the complexity of the design, the number of 
iterations, neurons, layers and certain other parameters like 
compactness of the code, the method of Hamming Distance 
Classifier is used. 

II. ALGORITHM 
The Hamming Distance (HD) between two strings of 

equal length is the number of positions at which the 
corresponding symbols are different. The concept used in 
this algorithm is Hamming Distance classifier, which selects 
the stored classes that are at minimum HD value to the noisy 
or incomplete argument vector presented at the input [1]. The 
Hamming distance algorithm uses two steps in order to give 
a best next move. This strategy either helps the network to 
win or else prevents the opponent from winning. 

A. Step1:Basic Step 

This step involves an eight-class Hamming network 
which has nine inputs and corresponding eight outputs. The 
eight classes are all the possible final winning 
configurations for the neural network or the opponent as 
shown in the Fig. 1:  

 
Figure 1. All  winning configurations of the board.The opponent’s move 

is X and network’s move is O 

The network will have nine inputs corresponding to each cell 
of the grid, and the input values will be limited to the 
following values, Fig.2: 
  0: Unoccupied cell 
  1: Protagonist player 
 -1: Opponent player 

 
       

Figure 2. This shows the grid nomenclature. 

The weight matrix consists of nine-tuple prototype 
vector of each of the eight winning classes. 
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The above weight matrix is used to design the network as 
follows, Fig. 3: 

 
Figure 3. Network Diagram 

Using this design of the network, an input is given to the 
Hamming network with an activation function which 
performs a linear scaling. The input vector Y contains the 
current configuration of the board. A fixed bias value of 9/2 
is added to input of each neuron to yield 

𝑁𝑁𝑁𝑁𝑁𝑁 =  1
2
𝑊𝑊𝑊𝑊 + 𝐶𝐶

 

 

Where C is the column vector of fixed biases. 

Since the output of the above formula yields a Hamming 
distance between 0 and 9, it is scaled down to lie between 0 
and 1 using 

𝐹𝐹 =   𝑁𝑁𝑁𝑁𝑁𝑁 9⁄  
Two other arrays are extracted from Y for winning 

configurations of X and O respectively as follows: 

X array: each of the -1 in input array is replaced with 1 
and rest all are replaced with a -1, Fig. 4(b). 

O array: each of the 0 in input array is replaced with -1 
and rest all remain same Fig. 4(b). 

When these arrays are given as an input to the Hamming 
distance network sequentially, we get two output arrays of 
length 8 each, we call them output of X and output of O. 
These represent the hamming distances of input from 
winning configurations for the opponent and the neural 
network respectively. Using these 16 values the network 
makes a plausible move as follows: 

     (a)                                                                  (b) 
 

Figure 4. (a) Input configuration.(b) Extracted X and O arrays 
respectively. 

 

1. The maximum of the 16 output values say ‘i’, is 
selected which indicates the class at the smallest Hamming 
distance. 

2. If the value belongs to the first set that is output of 
X, the network compares the values represented by the ith 
row of the weight matrix with the current board 
configuration and checks if there is a chance of opponent 
winning in the opponent’s very next move, if so the network 
prevents it by taking a move along that configuration. 

3. Else if the value belongs to the second set that is 
output of O, again the network compares the values 
represented by the ith row of the weight matrix with the 
current board configuration and checks if the configuration 
along that direction contains either 0 or 1. If so, it makes a 
move to the first unoccupied position along that 
configuration. Thus, it moves a step closer to winning. 

4. If none of the above two conditions satisfy, the 
network replaces i by a negative number like -1 so that it is 
not selected again. Now, the network proceeds to find the 
next maximum and repeats the above steps till a satisfactory 
move is decided. 

In the case where the next move is a winning move for 
both the network and the opponent, the Hamming distances 
calculated are such that the network prefers to win rather 
than avoiding the opponent from winning. 

B. Step 2. Iterative step 

In this step, the neural network anticipates the next move 
of the opponent which helps it strengthen its decision 
regarding the current move to be made. The algorithm 
proceeds as follows: 

Initially the network maintains an array of hamming 
distances which helps it decide on the best possible next 
move. This array is updated in the following manner: 

1. Given a current input configuration, the network 
calls the basic step to predict the next move say ‘k’. Let 
HD1 be the hamming distance array for the basic step. HD1 
(k) is the maximum hamming distance of the array 
currently. 

2. Once the next move is decided, the network runs the 
basic step again for each possible opponent’s next move 
based on the network’s current move. This produces the 
next to next move of the network for each possible next 
move say ‘m’, of the opponent. This produces m maximum 
hamming distances for each possible next move which are 
then added to HD1 (k). 

3. The network replaces the next move in step 1, by 
second maximum hamming distance move and repeats the 
above steps. Then the network replaces the next move with 
third maximum hamming distance move and repeats the 
above steps. This continues till all possible next moves are 
exhausted. 

4. HD1 now contains the gross hamming distance due to 
all iterations. The maximum of HD1 gives most profitable 
next move. 

    ,                               (2) 

                                          (3) 
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This next move is final decision of the neural network 
based on the opponent’s previous move. The above 
algorithm is executed every time it is the network’s turn to 
make a move.  

III. RESULTS 
The Hamming Distance algorithm was coded using 

MATLAB. The simulation results for certain cases of inputs 
are shown below: 

1. The following configuration, Fig. 5(a) is given as 
input to the network. Here, in the next step it is possible for 
neural network to win horizontally along the second row, as 
well as prevent the opponent from winning horizontally 
along the first row, but the network prefers to win by 
choosing the next move as cell number six as shown in Fig. 
5(b). 

      (a)                                                                  (b) 
Figure 5.  (a) The Input configuration. (b) The output configuration. 

2. If we give an input such that the opponent is about 
to win say diagonally as in the given configuration, Fig. 6(a),  
the neural network prevents it from winning by correctly 
making the next move to cell number seven, Fig.6(b). 

 

                     (a)                                                                 (b) 

Figure 6.  (a) The Input configuration. (b) The output configuration. 

IV. DISCUSSION 
The Tic-Tac-Toe game has been implemented using 

neural networks previously but it was done using error back-
propagation algorithm. In this algorithm, the network 
undergoes learning using inputs and their corresponding 
desired outputs. Error is calculated at each step by comparing 
the expected and actual output and weights are updated to 
reduce this error. This algorithm is quite inefficient because 
of following reasons. Firstly, the neural network is trained 
using every possible board configuration (input) and the 
corresponding best move (desired outputs). Secondly, the 
network is to be initiated using random weights which are 
updated at each learning step, it is highly probable that the 
weight combination may reach a local minima at the error 
surface and get stuck. As a result, the simulation needs to be 
restarted with new random weights.  Thirdly, since the 
learning rate determines how much influence error values 
have on weight and bias changes, it has to be wisely chosen. 
Finally, a high efficiency game which can predict best moves 
and win the game requires hidden layers with a large number 
of neurons and hundreds of iterations which is 
computationally complex [4]. It uses 48 neurons in the first 

layer, nine in the second and runs for 200 iterations with 
variable weights, to find the most optimal move.  

However, the Hamming Distance algorithm proposed by 
us uses only eight neurons with fixed weights that do not 
change at each step. This algorithm runs for 100 iterations 
and also has comparatively much lesser runtime. Since the 
network is scalable, the calculated time complexity of the 
algorithm is     O (n3) where n is the number of cells (here 
nine). 

V. ADVANTAGES OF THE ALGORITHM 
The basic step itself is sufficiently accurate. The 

iterations are used to make the code more efficient. The 
efficiency of the code is such that the game always ends in a 
win or a draw. Since the basic step is the network of fixed 
weights with eight neurons, the hardware implementation 
has reduced tremendously. For a reasonably efficient game 
(using only basic step) one can implement the network using 
analog electronics, where each neuron will be replaced by an 
operational amplifier and each weight by resistors. The 
circuit is very simple, compact and inexpensive.  Since 
weights in error back-propagation algorithm keep updating at 
each step, it is not possible to implement it using analog 
electronics. 

The iterative step needs to be implemented for higher 
efficiency using digital electronics. The loops and 
conditional statements (which cannot be designed using 
analog electronics) can be simulated using digital platforms 
like Field Programmable Gate Arrays (F.P.G.A) and can be 
built on Application Specific Integrated Circuits (ASICs). 
The advantage of using this network is that the basic unit is 
very compact and the only extra (optional) requirement is the 
implementation of the iterations. 

Since the software program of the algorithm is compact 
and simple it can be implemented as applications for mobile 
and other portable devices. 

VI. CONCLUSION 

In this paper, we have looked into the usage of Hamming 
Distance Classifier to solve common problems like Tic-Tac-
Toe. This is important because there are new algorithms 
developing every day, thus the need for optimal and less 
complex algorithms has become vital. Our contributions to 
the Tic-Tac-Toe problem can be summarized as follows: 

1. Considering different approaches to the problem 

2. Developing an optimal algorithm to solve the problem. 

3. Improving the efficiency of the algorithm while 
maintaining polynomial time complexity.  

This research may be helpful in improving the 
complexity and providing optimal solutions to similar 
problems. 

FUTURE WORK: The algorithm proposed by us uses 
iterations some of which are redundant. We can exploit the 
symmetry of the input configuration to eliminate those cases 
and thus reduce the number of iterations drastically.  
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Also, this paper deals only with the software aspect of the 
algorithm. We plan to simulate the algorithm using VHDL 
on F.P.G.As. 
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