
Solution to the Tic-Tac-Toe Problem using Hamming Distance approach in a Neural
Network

Nazneen Fatema Rajani

Dept. of Information Systems
BITS Pilani, K. K. Birla – Goa Campus

Goa, India
E Mail: emailnazneen@gmail.com

 Rajoshi Biswas

Dept. of Electronics and Instrumentation
BITS Pilani, K. K. Birla – Goa Campus

Goa, India

Dr. Gaurav Dar
Dept. of Physics

BITS Pilani, K. K. Birla – Goa Campus
Goa, India

Dr. Ramesha C. K.
Dept. of Electrical, Electronics and Instrumentation

BITS Pilani, K. K. Birla – Goa Campus
Goa, India

Abstract — This paper focuses on using a Hamming Distance
Classifier in Neural Networks to find the most optimal move to
be made in the Tic-Tac-Toe problem such that the game
always ends in a win or a draw.

Keywords-Hamming Distance Classifier, Back Propagation
Network.

I. INTRODUCTION
The Tic-Tac-Toe problem has been addressed in a

number of ways to improve efficiency, accuracy and reduce
complexity in the quickest method possible. However, using
neural networks there are certain advantages to conventional
approaches. Firstly, the machine tries to approach the
problem the way human brain works but with no possibility
of errors and quickly finding the most optimal ways to win
or in some cases prevent loss. The usual approach is to use
back-propagation algorithm [2] which minimizes the error
calculated for each iteration to obtain the best move. In order
to reduce the complexity of the design, the number of
iterations, neurons, layers and certain other parameters like
compactness of the code, the method of Hamming Distance
Classifier is used.

II. ALGORITHM
The Hamming Distance (HD) between two strings of

equal length is the number of positions at which the
corresponding symbols are different. The concept used in
this algorithm is Hamming Distance classifier, which selects
the stored classes that are at minimum HD value to the noisy
or incomplete argument vector presented at the input [1]. The
Hamming distance algorithm uses two steps in order to give
a best next move. This strategy either helps the network to
win or else prevents the opponent from winning.

A. Step1:Basic Step

This step involves an eight-class Hamming network
which has nine inputs and corresponding eight outputs. The
eight classes are all the possible final winning
configurations for the neural network or the opponent as
shown in the Fig. 1:

Figure 1. All winning configurations of the board.The opponent’s move

is X and network’s move is O

The network will have nine inputs corresponding to each cell
of the grid, and the input values will be limited to the
following values, Fig.2:
 0: Unoccupied cell
 1: Protagonist player
 -1: Opponent player

Figure 2. This shows the grid nomenclature.

The weight matrix consists of nine-tuple prototype
vector of each of the eight winning classes.

(1)

2011 Second International Conference on Intelligent Systems, Modelling and Simulation

978-0-7695-4336-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ISMS.2011.70

3

The above weight matrix is used to design the network as
follows, Fig. 3:

Figure 3. Network Diagram

Using this design of the network, an input is given to the
Hamming network with an activation function which
performs a linear scaling. The input vector Y contains the
current configuration of the board. A fixed bias value of 9/2
is added to input of each neuron to yield

𝑁𝑁𝑁𝑁𝑁𝑁 = 1
2
𝑊𝑊𝑊𝑊 + 𝐶𝐶

Where C is the column vector of fixed biases.

Since the output of the above formula yields a Hamming
distance between 0 and 9, it is scaled down to lie between 0
and 1 using

𝐹𝐹 = 𝑁𝑁𝑁𝑁𝑁𝑁 9⁄
Two other arrays are extracted from Y for winning

configurations of X and O respectively as follows:

X array: each of the -1 in input array is replaced with 1
and rest all are replaced with a -1, Fig. 4(b).

O array: each of the 0 in input array is replaced with -1
and rest all remain same Fig. 4(b).

When these arrays are given as an input to the Hamming
distance network sequentially, we get two output arrays of
length 8 each, we call them output of X and output of O.
These represent the hamming distances of input from
winning configurations for the opponent and the neural
network respectively. Using these 16 values the network
makes a plausible move as follows:

 (a) (b)

Figure 4. (a) Input configuration.(b) Extracted X and O arrays
respectively.

1. The maximum of the 16 output values say ‘i’, is
selected which indicates the class at the smallest Hamming
distance.

2. If the value belongs to the first set that is output of
X, the network compares the values represented by the ith
row of the weight matrix with the current board
configuration and checks if there is a chance of opponent
winning in the opponent’s very next move, if so the network
prevents it by taking a move along that configuration.

3. Else if the value belongs to the second set that is
output of O, again the network compares the values
represented by the ith row of the weight matrix with the
current board configuration and checks if the configuration
along that direction contains either 0 or 1. If so, it makes a
move to the first unoccupied position along that
configuration. Thus, it moves a step closer to winning.

4. If none of the above two conditions satisfy, the
network replaces i by a negative number like -1 so that it is
not selected again. Now, the network proceeds to find the
next maximum and repeats the above steps till a satisfactory
move is decided.

In the case where the next move is a winning move for
both the network and the opponent, the Hamming distances
calculated are such that the network prefers to win rather
than avoiding the opponent from winning.

B. Step 2. Iterative step

In this step, the neural network anticipates the next move
of the opponent which helps it strengthen its decision
regarding the current move to be made. The algorithm
proceeds as follows:

Initially the network maintains an array of hamming
distances which helps it decide on the best possible next
move. This array is updated in the following manner:

1. Given a current input configuration, the network
calls the basic step to predict the next move say ‘k’. Let
HD1 be the hamming distance array for the basic step. HD1
(k) is the maximum hamming distance of the array
currently.

2. Once the next move is decided, the network runs the
basic step again for each possible opponent’s next move
based on the network’s current move. This produces the
next to next move of the network for each possible next
move say ‘m’, of the opponent. This produces m maximum
hamming distances for each possible next move which are
then added to HD1 (k).

3. The network replaces the next move in step 1, by
second maximum hamming distance move and repeats the
above steps. Then the network replaces the next move with
third maximum hamming distance move and repeats the
above steps. This continues till all possible next moves are
exhausted.

4. HD1 now contains the gross hamming distance due to
all iterations. The maximum of HD1 gives most profitable
next move.

 , (2)

 (3)

4

This next move is final decision of the neural network
based on the opponent’s previous move. The above
algorithm is executed every time it is the network’s turn to
make a move.

III. RESULTS
The Hamming Distance algorithm was coded using

MATLAB. The simulation results for certain cases of inputs
are shown below:

1. The following configuration, Fig. 5(a) is given as
input to the network. Here, in the next step it is possible for
neural network to win horizontally along the second row, as
well as prevent the opponent from winning horizontally
along the first row, but the network prefers to win by
choosing the next move as cell number six as shown in Fig.
5(b).

 (a) (b)
Figure 5. (a) The Input configuration. (b) The output configuration.

2. If we give an input such that the opponent is about
to win say diagonally as in the given configuration, Fig. 6(a),
the neural network prevents it from winning by correctly
making the next move to cell number seven, Fig.6(b).

 (a) (b)

Figure 6. (a) The Input configuration. (b) The output configuration.

IV. DISCUSSION
The Tic-Tac-Toe game has been implemented using

neural networks previously but it was done using error back-
propagation algorithm. In this algorithm, the network
undergoes learning using inputs and their corresponding
desired outputs. Error is calculated at each step by comparing
the expected and actual output and weights are updated to
reduce this error. This algorithm is quite inefficient because
of following reasons. Firstly, the neural network is trained
using every possible board configuration (input) and the
corresponding best move (desired outputs). Secondly, the
network is to be initiated using random weights which are
updated at each learning step, it is highly probable that the
weight combination may reach a local minima at the error
surface and get stuck. As a result, the simulation needs to be
restarted with new random weights. Thirdly, since the
learning rate determines how much influence error values
have on weight and bias changes, it has to be wisely chosen.
Finally, a high efficiency game which can predict best moves
and win the game requires hidden layers with a large number
of neurons and hundreds of iterations which is
computationally complex [4]. It uses 48 neurons in the first

layer, nine in the second and runs for 200 iterations with
variable weights, to find the most optimal move.

However, the Hamming Distance algorithm proposed by
us uses only eight neurons with fixed weights that do not
change at each step. This algorithm runs for 100 iterations
and also has comparatively much lesser runtime. Since the
network is scalable, the calculated time complexity of the
algorithm is O (n3) where n is the number of cells (here
nine).

V. ADVANTAGES OF THE ALGORITHM
The basic step itself is sufficiently accurate. The

iterations are used to make the code more efficient. The
efficiency of the code is such that the game always ends in a
win or a draw. Since the basic step is the network of fixed
weights with eight neurons, the hardware implementation
has reduced tremendously. For a reasonably efficient game
(using only basic step) one can implement the network using
analog electronics, where each neuron will be replaced by an
operational amplifier and each weight by resistors. The
circuit is very simple, compact and inexpensive. Since
weights in error back-propagation algorithm keep updating at
each step, it is not possible to implement it using analog
electronics.

The iterative step needs to be implemented for higher
efficiency using digital electronics. The loops and
conditional statements (which cannot be designed using
analog electronics) can be simulated using digital platforms
like Field Programmable Gate Arrays (F.P.G.A) and can be
built on Application Specific Integrated Circuits (ASICs).
The advantage of using this network is that the basic unit is
very compact and the only extra (optional) requirement is the
implementation of the iterations.

Since the software program of the algorithm is compact
and simple it can be implemented as applications for mobile
and other portable devices.

VI. CONCLUSION

In this paper, we have looked into the usage of Hamming
Distance Classifier to solve common problems like Tic-Tac-
Toe. This is important because there are new algorithms
developing every day, thus the need for optimal and less
complex algorithms has become vital. Our contributions to
the Tic-Tac-Toe problem can be summarized as follows:

1. Considering different approaches to the problem

2. Developing an optimal algorithm to solve the problem.

3. Improving the efficiency of the algorithm while
maintaining polynomial time complexity.

This research may be helpful in improving the
complexity and providing optimal solutions to similar
problems.

FUTURE WORK: The algorithm proposed by us uses
iterations some of which are redundant. We can exploit the
symmetry of the input configuration to eliminate those cases
and thus reduce the number of iterations drastically.

5

Also, this paper deals only with the software aspect of the
algorithm. We plan to simulate the algorithm using VHDL
on F.P.G.As.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable

comments. We also thank all those who have helped in this
work.

REFERENCES
[1] Jacek M. Zurada, “ Introduction to Artificial Neural Systems,” West

Publishing Company,2006.

[2] Simon Haykin, “Neural Networks A Comprehensive Foundation,”
Pearson Education, 2nd ed, pp 159-178.

[3] Patrick H. Winston,” Artificial Intelligence, Addison-Wesley, 3rd
ed,1993.

[4] Neural Network with learning by backward error propagation.
Available: http://www.colinfahey.com/

[5] K. Pavel, K.Jan , D. Jan, K. Oleg, Č. Miroslav, and Š. Miroslav,
 “Meta-learning approach to neural network optimization,” Neural

Networks, vol. 23, issue 4, pp.568-582, May 2010.
[6] Terence D. Sanger, “Optimal unsupervised learning in a single-layer

linear feedforward neural network ,” Neural Networks, vol. 2, issue
6, pp. 459-473,1989.

6

